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The Dependent Calculus of Indistinguishability (DCOI) uses dependency tracking to identify irrelevant

arguments and uses indistinguishability during type conversion to enable proof irrelevance, supporting

run-time and compile-time irrelevance with the same uniform mechanism. DCOI also internalizes reasoning

about indistinguishability through the use of a propositional equality type indexed by an observer level.

As DCOI is a pure type system, prior work establishes only its syntactic type safety, justifying its use as the

basis for a programming language with dependent types. However, it was not clear whether any instance

of this system would be suitable for use as a type theory for theorem proving. Here, we identify a suitable

instance DCOI
𝜔
, which has an infinite predicative universe hierarchy. We show that DCOI

𝜔
is logically

consistent, normalizing, and that type conversion is decidable. We have mechanized all results using the Coq

proof assistant.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: Modes, Dependent Types, Coq, Formalization

1 Introduction
Dependency-tracking type systems govern when functions are allowed to depend on their inputs.

More specifically, they classify inputs using various dependency levels (ℓ) and assign a level to

the result of a computation. The key idea is that the type system prevents the flow of information

from high-level sources to low-level results. In other words, low-level results may not depend on

high-level input.

A key ingredient of dependency-tracking systems is the indistinguishability relation: a definition

of program equivalence that takes an observer level into account. This relation identifies more

terms than standard definitions of program equivalence because a particular observer may be

prevented from making a distinction between program values classified above a certain level. When

used for information flow control [Abadi et al. 1999], indistinguishability at low observer levels

means that high-level secrets are not revealed.

TheDependent Calculus of Indistinguishability (DCOI) [Liu et al. 2024] adapts dependency tracking
to the context of dependently typed programming languages. The primary goal of dependency

tracking in DCOI is the identification of irrelevant arguments. Such arguments can be erased during

compilation to produce faster execution and ignored during equivalence checks at compile time.

In DCOI, the indistinguishability relation verifies that irrelevant arguments can be erased when

executed. If a program produces the same value for all irrelevant arguments at run time, then such

arguments may be replaced by trivial values.

Furthermore, the DCOI type system also uses indistinguishability in its conversion rule. If two

types cannot be distinguished by some observer, then it is sound to replace one with another at

compile time. Thus, DCOI supports compile-time irrelevance, and may ignore irrelevant arguments

when checking for type equality. DCOI also internalizes indistinguishability as a type, with a

level-indexed elimination form.

Liu et al. [2024] use syntactic methods to show the soundness of DCOI’s type system and that

its definition of indistinguishability supports noninterference. However, while syntactic methods
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are sufficient for these purposes, they cannot be used to reason about semantic properties of type

systems such as logical consistency, normalization, and decidable type conversion.

For flexibility, DCOI is designed around a Pure Type System (PTS) [Barendregt 1991], where

various instances of sorts, rules, and axioms determine the versions of quantification that is allowed

in the language. All instances of DCOI are type safe, but only some can be used as the basis of

a consistent logic. For example, including the U : U axiom produces a language that allows

nontermination while others (such as those that include a predicative universe hierarchy, or a

single impredicative sort) are conjectured to only include normalizing terms.

We would like to explore the use of dependency tracking in the context of a logically consistent

dependent type theory. Therefore, in this paper, we define the language DCOI
𝜔
: a dependent type

theory with dependency tracking featuring a predicative universe hierarchy and large eliminations.

This calculus is based on an instance of DCOI and includes many of its features, such as level-

indexed dependent function types (Πx :
ℓ A. B), level-indexed dependent pairs (Σx :

ℓ A. B), and
level-indexed propositional equality (a =ℓ b), the internalized indistinguishability relation. However,
the needs of logical reasoning in a dependent type theory means that we must refine these features

and enhance their expressiveness.

Logical consistencymeans that programmers can use DCOI
𝜔
to reason internally about their code.

Like Coq [Coq Development Team 2019], Agda [Agda Development Team 2023], and Lean [deMoura

et al. 2015], DCOI
𝜔
supports programming and program verification in the same framework. Unlike

these systems, programmers may also internally reason about irrelevance, information flow, or any

other application of dependency tracking.

More generally, the contributions of this paper are twofold: new extensions that increase the

expressiveness of the system, and stronger semantics-based results about this well-behaved instance

of the system.

• We extend the language with an empty type⊥with an elimination form that allows programmers

to apply the principle of explosion. Importantly, eliminating high-level proofs of the empty type

can refute impossible execution paths at any execution level. This feature means that proofs can

exist at an erasable dependency level while being useful for programming. The consistency of

DCOI
𝜔
means that there is no closed term of the empty type.

• We develop the theory of the observer-indexed propositional equality type in DCOI
𝜔
by en-

hancing the expressiveness of its elimination form, a label-aware variant of the J operator.
We demonstrate that this form is more expressive than prior work by using it to derive the

reasoning principle which states that equalities indistinguishable by a high observer are also

indistinguishable by a low observer.

• We provide a weak elimination form for level-indexed dependent pairs, from which we recover

strong projections. We show that the weak elimination form for level-indexed pairs is more

general than Liu et al.’s treatment of strong projections as primitives; our admissible second

projection rule does not require a well-formedness check when a high-level observer projects

the second component of a low-level pair.

• We show that DCOI
𝜔
is logically consistent (i.e. there is no inhabitant of the empty type) and

weakly normalizing (i.e. every term can be reduced to a normal form). Due to its expressive

conversion rule, support for large eliminations, and infinite universe hierarchy, we cannot reuse

proofs by Abel and Scherer [2012]; Geuvers [1994] by embedding DCOI
𝜔
into their systems.

Instead, we define a syntactic logical predicate to directly show the metatheoretic results as

corollaries of the fundamental theorem.
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• Following Takahashi [1995] and Accattoli et al. [2019], we prove the standardization theorem,

which states that every weakly normalizing term can be reduced to normal form by the deter-

ministic leftmost-outermost reduction strategy. From the standardization theorem and the weak

normalization property, we show that type conversion is decidable. Furthermore, we can extract

from our Coq proof an OCaml function that can be used as a decision procedure.

All of our results have been developed using the Coq proof assistant and our proofs are available in

our public repository at under the proofs directory. Furthermore, we have extended the prototype

type checker by Liu et al. [2024], suitable for experimenting with the newly introduced features,

which is also available under the impl directory.

2 Examples
We start with examples that demonstrate DCOI

𝜔
in action, with emphasis on its support for run-

time and compile-time irrelevance. To make these examples more realistic, our presentation uses

the syntax of our prototype implementation, which is based on a bidirectional type system and

relies on a constraint solver to infer level annotations.

In these examples, we use the naturals as concrete dependency levels. For example, we use level

L for run-time relevant code and level H for irrelevant terms. Some level annotations are omitted

when they can be inferred by the type checker, though many are retained for clarity.

All examples in this section are type checked by our prototype type checker and can be found

in impl/pi/Paper.pi. Our implementation includes a few convenience features, in particular

inductive definitions, not found in the core DCOI
𝜔
system that we describe in this paper.

2.1 Run- and compile-time irrelevance
Parts of programs that are not meaningfully used during computation can be considered run-
time irrelevant. An optimizing compiler can then erase run-time irrelevant parts, and irrelevance

annotations tell the compiler what can be erased. Well-typedness of a program ensures that

irrelevant arguments are never used in a relevant function.

Consider the following polymorphic identity function, with an irrelevant type argument (@H) and
relevant term argument (@L). This function is defined at level @L, which is the level of its output.

id :@L (A :@H Type) → (@L A) → A

id = 𝜆A x. x
Although the type argument informs the type checker about how the function should be typed,

it does not appear in the function body and is therefore erasable before execution.

This is not to say that irrelevant arguments may never appear in function bodies, because they

can be applied in other irrelevant positions. Consider the following function, which takes an

irrelevant argument and a constant function.

app :@L (@H Bool) → (@L (@H Bool) → Bool) → Bool

app = 𝜆x f. f x
The irrelevant parameter x is permitted to be used in the body because it is only ever passed as

an argument to the constant function f, itself a relevant function.
We can talk about the idea of constantness within the language itself using a level-aware

propositional equality type, as in the following proof.

cong :@L (f :@L (@H Bool) → Bool) → (x y :@H Bool) → (f x =@L f y)

cong = 𝜆f x y. refl
This proof asserts that a relevant function taking an irrelevant argument is indeed constant in

that argument. The equality type f x =@L f y is annotated with L to indicate that it holds only
for relevant terms. It holds by reflexivity, since f x and f y are considered definitionally equal by
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the type checker. Definitional equality will check that the two terms are indistinguishable at level L,
which ignores the higher-level arguments x and y, making them compile-time irrelevant. Finally,
the refl proof in the body of cong does not refer to any of the function arguments, allowing us to

type cong at level L to indicate that it is a constant function itself.

2.2 Irrelevance is relative
In the polymorphic identity function, the type parameter A is irrelevant in the function body but

makes a relevant appearance in the type signature. Our system allows A to appear as both relevant

and irrelevant by generalizing irrelevance as a notion that is relative to an observer level. The level

H variable A is irrelevant with respect to the level L observer, the body of the identity function. The

well-formedness of the id’s type signature can be independently checked at observer level H.
Therefore, a variable x with @H annotation is not intrinsically irrelevant. Rather, its relevance is

dependent on the observer level in which x appears. The equational theory of DCOI
𝜔
is indexed by

an observer level and only treats computations at higher levels as irrelevant. Consider the following

example, whose well-typedness depends on how we instantiate the level, which we mark as ?.
irr :@L (P :@? (@H Bool) → Type) → (b :@H Bool) → (@L P b) → (P true)

irr = 𝜆f b x. x
Whether irr type checks depends on whether we can convert the type of x from P b to P true.

Since there is nothing we know about b, the predicate P must behave like a constant predicate, and

that is only the case if we instantiate ? with level L.
Although b is at level H and thus is irrelevant to irr, it may still be used relevantly by P if ? is

instantiated to level H or higher; our type system correctly rejects irr in those scenarios.

This shows that as the observer level increases, more terms can be distinguished by definitional

equality since there are fewer terms that can be ignored, and the equality is finer. As equality
types internalize the notion of indistinguishability at a level, we can internalize the ability to lower

the level. In particular, given two levels ℓ0 ≤ ℓ1, the following internalizes the idea that a finer

equality indexed by a higher observer level can be downcast to a coarser equality indexed by a

lower observer level.

downcast : (A : Type) → (x y : A) → (x =@ℓ1 y) → (x =@ℓ0 y)

downcast = 𝜆A x y p. subst refl by p
In DCOI from prior work, the specification of the eliminator for equalities was not general

enough for downcast above to be provable.

2.3 Irrelevant constructor components
We now introduce inductive types that package up irrelevant terms and which can only be un-

packaged by other irrelevant terms. The following is a constructor for subset types [Constable

et al. 1986], which are refinement types whose elements contain a relevant term and an explicit

irrelevant proof of a predicate satisfied by the term. The type constructor itself and its parameters

are marked as irrelevant.

data Subset (A :@H Type) (B :@H (@L A) → Type) :@H Type where
pack of (x :@L A) (@H B x)

mem :@L (A : Type) → (B : A → Type) → (@L Subset A B) → A

mem = 𝜆A B p. case p of pack x y ⇒ x

prf :@H (A : Type) → (B : A → Type) → (p :@L Subset A B) → B (mem A B p)

prf = 𝜆A B p. case p of pack x y ⇒ y
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We can project out both the relevant term and the proof, but the projection of the proof must be

irrelevant. Irrelevance of the proof also means that we may equate two members of a subset type

merely when the relevant terms are equal, proven as follows.

pcong :@H (A :@H Type) → (B :@H A → Type) → (x y : A)

(bx :@H B x) → (by :@H B y) → (@H x =@L y) →
(pack x bx =@L pack y by : Subset A B)

pcong = 𝜆A B x y bx by p. subst refl by p
Thus compile-time irrelevance of proofs helps us write fewer proofs. As a concrete example,

suppose we define the naturals Nat, their addition operator +, a predicate isEven on naturals

asserting their evenness, a proof that addition is commutative, and a proof that the sum of two

even numbers is even. The following are the types of the latter two definitions.

comm :@H (n m : Nat) → (n + m =@L m + n)

esum :@H (n m : Nat) → (@H isEven n) → (@H isEven m) → isEven (n + m)
An even number Even can be represented as a subset type of even naturals Subset Nat isEven,

and correspondingly we can define their addition.

eadd :@L Even → Even → Even

eadd = 𝜆en em. case en of pack n en' ⇒
case em of pack m em' ⇒ pack (n + m) (esum n m en' em')

We can then prove that addition of even numbers is also commutative using pcong.
ecomm :@H (en em : Even) → (eadd en em =@L eadd em en)

ecomm = 𝜆en em. case en of pack n en' ⇒
case em of pack m em' ⇒

pcong Nat isEven (n + m) (m + n)

(esum n m en' em') (esum m n em' en') (comm n m)
If the proof in the subset type were not irrelevant, we would have the additional proof obligation

of showing that (esum n m en' em') and (esum m n em' en') are equal.

2.4 Eliminating empty types
In general, irrelevant inductives may not be eliminated to relevant terms. The exception in DCOI

𝜔
is

the empty type, whose eliminator may be typed at any level, regardless of the level of its scrutinee.

data Empty :@H Type where {}
This feature, new to DCOI

𝜔
, allows us to handle impossible match cases, even when the proof

of impossibility is irrelevant. For example, consider taking the head of a nonempty list given an

irrelevant proof of its nonemptiness. The definitions of the list type and its length are standard.

data List (A :@H Type) :@H Type where
nil

cons of (@L A) (@L List A)

length :@L (A :@H Type) → List A → Nat
A safe head function requires a proof that the length of the given list is not equal to zero, i.e. that

(@H (@H (length Nat l) = zero) → Empty). This proof should be irrelevant, so it is marked

with @H. In the nil case, the type of the proof is (zero = zero) → Empty, so we can obtain and

eliminate a proof of the empty type.

head :@L (l : List Nat) → (@H (@H (length Nat l) = zero) → Empty) → Nat

head = 𝜆l. case l of
nil ⇒ 𝜆f. case (f Refl) of {}

cons x _ ⇒ 𝜆_. x
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3 DCOI𝜔

In this section, we present the grammar and judgments of DCOI
𝜔
, which is an instantiation of the

Dependent Calculus of Indistinguishability (DCOI) [Liu et al. 2024] with the PTS axioms and rules

of a predicative universe hierarchy. The grammar is given in Figure 1.

Γ,Δ F � | Γ, x :
ℓ A Typing contexts

Ξ,ΦF � | Ξ, x : ℓ Level contexts

A, B,C,
a, b, c, p F Terms

| x | Ui | ⊥ | absurd b variables, type universes, empty type, absurd
| Πx :

ℓ A. B | 𝜆xℓ . b | b aℓ function types, abstractions, applications
| Σx :

ℓ A. B | (aℓ , b) | let (xℓ0 , y) = aℓ in b pair types, pairs, matching
| ⊤ | tt | let tt = aℓ in b unit type, unit value, eliminator
| a =ℓ b | refl | J c pℓ equality types, reflexivity, J eliminator
| Nat | zero | succ a | indℓ a b0 (𝜆x y. b1) naturals, zero, successor, induction

Fig. 1. Grammar of contexts and terms

Following Abadi et al. [1999], DCOI
𝜔
is parameterized over a meet-semilattice of dependency

levels, ℓ . We use ℓ0 ∧ ℓ1 for the meet of ℓ0 and ℓ1. In the following examples, we use concrete levels

low L and high H, where L < H.
Universe levels (i, j, k) are (meta-level) naturals and i ∨ j computes the maximum of i and j.
Function types, abstractions, pair types, matching and induction are all binding forms. Although

our mechanization uses de Bruijn indices for representing binding and simultaneous substitutions,

for clarity we use named variables and single substitutions here. We use the metavariables x, y, z
for variables and a[b/x] for the substitution of a term b in place of the variable x inside the term a.
As in Section 2, we use

ℓA → B for Πx :
ℓ A. B when x does not appear in B.

Γ ⊢ a :
ℓ A (Well-typedness)

Wt-Var

⊢ Γ
x :

ℓ0 A ∈ Γ ℓ0 ≤ ℓ

Γ ⊢ x :
ℓ A

Wt-Univ

⊢ Γ

Γ ⊢ Ui :
ℓ Ui+1

Wt-Empty

⊢ Γ

Γ ⊢ ⊥ :
ℓ Ui

Wt-Absurd

Γ ⊢ b : ⊥ Γ ⊢ A : Ui

Γ ⊢ absurd b :
ℓ A

Wt-Pi

Γ ⊢ A :
ℓ Ui

Γ, x :
ℓ0 A ⊢ B :

ℓ Uj

Γ ⊢ Πx :
ℓ0 A. B :

ℓ Ui∨j

Wt-Abs

Γ, x :
ℓ0 A ⊢ b :

ℓ B

Γ ⊢ Πx :
ℓ0 A. B : Ui

Γ ⊢ 𝜆xℓ0 . b :
ℓ Πx :

ℓ0 A. B

Wt-App

Γ ⊢ b :
ℓ Πx :

ℓ0 A. B
Γ ⊢ a :

ℓ0 A

Γ ⊢ b aℓ0 :ℓ B[a/x]

Fig. 2. Typing rules (universes, empty, functions)

The main judgment is the typing relation, which has the form Γ ⊢ a :
ℓ A for a term a that is

well typed under context Γ at observer level ℓ with type A. Its rules are given in Figure 2. To

reduce clutter, we also use the judgment Γ ⊢ a : A to mean that there exists some level ℓ such

that Γ ⊢ a :
ℓ A holds. The typing judgment is defined mutually with the context well-formedness

judgment ⊢ Γ , which holds if the context’s types are well typed by some universeUi. Premises

which may be omitted in admissible variants of rules without them are highlighted in grey .
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Our syntax is designed to highlight the parts of terms which play a role in evaluation. Therefore,

type annotations are omitted, and consequently the typing judgment is not decidable. This mini-

malist design lends flexibility in which annotations a type checker implementation may choose to

add to the syntax.

The typing rules are defined mutually with the context well-formedness rules, omitted here,

which assert the well-sortedness of its types. When viewed as a PTS, the rulesWt-Univ andWt-Pi

correspond to the sort axioms (Ui,Ui+1) for every i and the sort rules (Ui,Uj,Ui∨j) for every i, j.
Except for the use of levels for dependency tracking, typing rules of DCOI

𝜔
are standard for

dependent type theory. In the rest of this section, we discuss how dependency levels interact with

the rules of Figure 2 in Section 3.1. We discuss how the conversion rule, which changes the type of

a term to an equivalent one, uses a definitional equality defined in terms of indistinguishability in

Section 3.2. We then look at the rules for dependent pair types and the unit type (Section 3.3), and

finally for propositional equality types (Section 3.4), which internalize indistinguishability.

DCOI
𝜔
also includes the naturals and their induction principle. Notably, the induction principle

permits large eliminations: we can branch on a natural and return different types for each branch.

However, as their interactions with dependency levels are similar to those of the other constructs,

we omit them from our discussion and only list their rules in Appendix A.1.

3.1 Dependency tracking
The observer level ℓ of a typing judgment Γ ⊢ a :

ℓ A tracks what variables a may use, as well as the

level at which a itself may be used in later computation. The former is enforced by the constraint

in rule Wt-Var, which permits a variable to be used only if the observer level is at least as high as

that of the variable. Informally, higher-level information cannot leak into a lower-level term.

In rule Wt-Abs, the function parameter is annotated with a fixed level, thus restricting its uses

to observers at least that high. Even so, there is no restriction on that level, and a function may be

applied to an argument of a higher level, as long as the annotated level of the function parameter

matches the annotated level of the application in ruleWt-App. Allowing a higher-level parameter is

useful because it may be used in the function’s type, which is typed at an arbitrary level independent
of the function itself in the second premise of ruleWt-Abs. By ruleWt-Pi, there are no restrictions

on the levels of the domain and codomain types either (as long as they match). As an example,

consider the following typing judgment.

� ⊢ (𝜆𝑋H. 𝜆xH. 𝜆f L . f xH) :L (Π𝑋 :
HUi .

H𝑋 → L (H𝑋 → 𝑋 ) → 𝑋 )
The entire function is typed at level L, while the parameters 𝑋 and x are annotated at level H, so

the inner function body cannot be x, for instance, even if it has the correct type. On the other hand,

the parameter f is a function that takes a high-level 𝑋 and returns a low-level 𝑋 , so f xH is a valid

function body. Meanwhile, the type of the function need only be well-typed at some level, and in

particular is well-typed at H, which allows using the high-level 𝑋 in the codomain of the type.

In general, we can prove a regularity lemma stating that the type of a well-typed term is itself

well typed at a level not necessarily related to that of the term, and may even be higher, as is

the case for the example above. Intuitively, this is permitted because there is no way for a term

to depend on its type at run time, so the type of a lower-level term can safely use higher-level

information without it leaking into the term.

Lemma 3.1 (Regularity).
1 If Γ ⊢ a :

ℓ A, then ⊢ Γ holds, and there exist ℓ0, i such that Γ ⊢ A :
ℓ0 Ui .

While generally a lower-level term may not meaningfully use higher-level information, a proof

of the empty type ⊥ at any level may be eliminated to any other level via rule Wt-Absurd. By

logical consistency, which we prove in Section 5, there is no closed term of type ⊥, and so it cannot
1 preservation.v:Wt_Wff, preservation.v:Wt_regularity
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contain any meaningful information, and furthermore represents a dead execution path. From

a type-theoretic perspective, the unconstrained elimination level allows us to handle impossible

cases of a lower-level term using a higher-level proof of its impossibility.

3.2 Definitional equality and indistinguishability

Wt-Conv

Γ ⊢ a :
ℓ A

Γ ⊢ B : Ui |Γ | ⊢ A ≡ B

Γ ⊢ a :
ℓ B

E-Conv

a ⇒∗ c0
b ⇒∗ c1 Ξ ⊢ c0 ≡ℓ c1

Ξ ⊢ a ≡ b

P-AppAbs

a0 ⇒ a1 b0 ⇒ b1
(𝜆xℓ0 . b0) a0ℓ0 ⇒ b1 [a1/x]

Fig. 3. Conversion, definitional equality, and parallel reduction (𝛽 only) rules

The typing rules also include ruleWt-Conv, shown in Figure 3, which allows converting the

type of a well-typed term to a definitionally equal type. Our definitional equality is untyped, but

eventually relies on the levels of variables, so its judgment form Ξ ⊢ a ≡ b requires a level context

Ξ that maps variables to levels (only). In rule Wt-Conv, this level context is produced by erasing

the typing context, denoted |Γ | , and dropping all type annotations.

Definitional equality is defined by rule E-Conv in Figure 3, which states that terms are equal

when they reduce to terms that are indistinguishable by some observer ℓ , defined in Figure 4

and described below. To make this level visible in the judgment, we also define Ξ ⊢ a ⇔ℓ b as

a level-annotated form of definitional equality: it holds iff a ⇒∗ c0, b ⇒∗ c1, and Ξ ⊢ c0 ≡ℓ c1.
Consequently, Ξ ⊢ a ≡ b holds iff there exists some level ℓ such that Ξ ⊢ a ⇔ℓ b holds.
Parallel reduction a ⇒ b consists of the 𝛽-reduction rules for our elimination forms, listed in

Figure 3 and in following subsections, along with rules for its reflexive, congruent closure, which

are omitted here and can be found in Appendix A.3. Multi-step parallel reduction a ⇒∗ b is the

transitive closure of parallel reduction.

Ξ ⊢ a ≡ℓ
ℓ0
b Ξ ⊢ a ≡ℓ b ((Guarded) Indistinguishability)

GI-Dist

Ξ ⊢ a ≡ℓ b
ℓ0 ≤ ℓ

Ξ ⊢ a ≡ℓ
ℓ0
b

GI-Indist

ℓ0 ≰ ℓ

Ξ ⊢ a ≡ℓ
ℓ0
b

I-Var

x : ℓ0 ∈ Ξ
ℓ0 ≤ ℓ

Ξ ⊢ x ≡ℓ x

I-Empty

Ξ ⊢ ⊥ ≡ℓ ⊥

I-Absurd

Ξ ⊢ absurd b0 ≡ℓ absurd b1

I-Pi

Ξ ⊢ A0 ≡ℓ A1

Ξ, x : ℓ0 ⊢ B0 ≡ℓ B1
Ξ ⊢ Πx :

ℓ0 A. B ≡ℓ Πx :
ℓ0 A1. B1

I-Abs

Ξ, x : ℓ0 ⊢ b0 ≡ℓ b1
Ξ ⊢ 𝜆xℓ0 . b0 ≡ℓ 𝜆xℓ0 . b1

I-App

Ξ ⊢ b0 ≡ℓ b1
Ξ ⊢ a0 ≡ℓ

ℓ0
a1

Ξ ⊢ b0 a0ℓ0 ≡ℓ b1 a1ℓ0

Fig. 4. (Guarded) indistinguishability rules (empty, functions)

Two terms are indistinguishable at observer level ℓ if they have the same shape and their subterms

are also indistinguishable at ℓ . The only exception is rule I-App that uses guarded indistinguishability,
Ξ ⊢ a ≡ℓ b , which is mutually defined with indistinguishability in Figure 4.

Indistinguishability is coarser than mere 𝛼-equivalence (and hence Ξ ⊢ a ≡ b is coarser than

mere 𝛽-equivalence of a and b) because guarded indistinguishability sometimes identifies terms

that are not 𝛼-equivalent. In rule I-App, if the arguments are labeled at ℓ0, but observed at ℓ , guarded

indistinguishability compares the arguments based on the relationship between ℓ0 and ℓ . If ℓ0 ≤ ℓ ,

meaning that the observer can fully see the arguments, then ruleGI-Dist applies, and the arguments
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must themselves be indistinguishable at ℓ . Otherwise, if ℓ0 ≰ ℓ , then rule GI-Indist applies, and

the arguments are too high to be observed at ℓ , so indistinguishability of the applications does not

consider the arguments. As a simple example, 𝑓 : L, 𝑥 : H, 𝑦 : H ⊢ f xH ≡L f yH holds even though

x and y could be anything, because the observer level is L, while the arguments’ levels are H and

therefore unobservable. Indistinguishability of unobservable arguments articulates the intuition

that functions may safely ignore these arguments that they cannot meaningfully use.

Indistinguishability is a partial equivalence relation. The source of partiality is due to the level

comparison that occurs in rule I-Var, where a variable may only be indistinguishable from itself if

the observer level is high enough to observe it. This prevents equating arbitrary terms via function

applications, such as 𝑥 : H, 𝑦 : H ⊢ (𝜆zH . z) xH ≡ (𝜆zH . z) yH, since the bodies of the functions
are not indistinguishable. Without this level comparison, we have via rule E-Conv the equalities

� ⊢ ⊤ ≡ (𝜆zH. z) ⊤H
, � ⊢ (𝜆zH . z) ⊤H ≡ (𝜆zH . z) ⊥H

, and � ⊢ (𝜆zH. z) ⊥H ≡ ⊥, which would permit a

closed term of ⊥ via repeated applications of ruleWt-Conv.

An important property of indistinguishability is the simulation property, which enforces that

indistinguishable terms must reduce in lockstep. This is crucial for proving further syntactic and

semantic lemmas in Sections 4 and 5, such as the preservation of definitional equality between two

terms as they reduce and the preservation of meaning for indistinguishable types.

Lemma 3.2 (Simulation).
2 If Ξ ⊢ a0 ≡ℓ b0 and a0 ⇒∗ a1, then there exists some b1 such that

b0 ⇒∗ b1 and Ξ ⊢ a1 ≡ℓ b1.

Compared to prior work by Liu et al. [2024], where indistinguishability is defined as an unde-

cidable relation that incorporates both 𝛽-reduction and conversion of irrelevant components, our

formulation of type conversion is more structured and breaks down type conversion into two

separate steps: reduction and checking indistinguishability. This algorithmic version of indistin-

guishability allows us to reduce the problem of proving decidability of type conversion to the

problem of finding a normalization procedure for well-typed terms (Section 5.3). Finally, we note

that if we instantiate DCOI
𝜔
with a singleton lattice, then indistinguishability degenerates into

𝛼-equivalence, and the definitional equality degenerates into 𝛽-equivalence.

3.3 Dependent pairs and unit
Dependent pairs are annotated with a fixed level in their first component, given by ℓ0 in rules Wt-

Sig andWt-Pair of Figure 5. Like for function types, the levels of pair types are not necessarily

related to that annotated level. While the first component of the pair constructor has a fixed level,

the level of the second component is the level of the overall pair.

In contrast to prior work by Liu et al. [2024], pairs are eliminated using a pattern-matching

expression instead of projections. The eliminator is typed according to rule Wt-Let, and its

reduction behavior is given by rule P-LetPair. It scrutinizes a pair a annotated at level ℓ1, binding

its first and second components as variables x at level ℓ0 and y at level ℓ1 respectively in the body b,
which must be typed at the same level ℓ as the overall eliminator. The overall type of the eliminator

is specified by the motive C, which is abstracted over the scrutinee z. The level of the scrutinee ℓ1 is
not exactly ℓ but bounded above by it; this is a subtle technical issue, which we defer to Section 6.1.

The first and second pair projections of a pair a at level ℓ1 can be recovered as follows.

𝜋
ℓ0
1
a := let (xℓ0 , y) = aℓ1 in x 𝜋

ℓ0
2
a := let (xℓ0 , y) = aℓ1 in y

The typing rules for the projections can be stated as admissible rules with the same premises

as the rules in DCOI, and are given in Figure 6 asWt-proj1
3
andWt-proj2.

4
The first projection

is well typed only if the first component’s level is bounded by the level of the pair: we can only

project an observable component. The second projection is well typed only if the first projection is

2 conv.v:simulation_star 3 admissible.v:T_Proj1 4 admissible.v:T_Proj2
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Wt-Sig

Γ ⊢ A :
ℓ Ui Γ, x :

ℓ0 A ⊢ B :
ℓ Uj

Γ ⊢ Σx :
ℓ0 A. B :

ℓ Ui∨j

Wt-Pair

Γ ⊢ a :
ℓ0 A Γ ⊢ b :

ℓ B[a/x] Γ ⊢ Σx :
ℓ0 A. B : Ui

Γ ⊢ (aℓ0 , b) :ℓ Σx :
ℓ0 A. B

Wt-Let

Γ ⊢ A : Ui Γ, x :
ℓ0 A ⊢ B : Uj

Γ, z :ℓ1 Σx :
ℓ0 A. B ⊢ C : Uk Γ ⊢ a :

ℓ1 Σx :
ℓ0 A. B

Γ, x :
ℓ0 A, y :

ℓ1 B ⊢ b :
ℓ C [(xℓ0 , y)/z] ℓ1 ≤ ℓ

Γ ⊢ let (xℓ0 , y) = aℓ1 in b :
ℓ C [a/z]

P-LetPair

a0 ⇒ a1 b0 ⇒ b1 c0 ⇒ c1
let (xℓ0 , y) = (a0ℓ0 , b0)ℓ in c0 ⇒ c1 [a1/x, b1/y]

Wt-Unit

⊢ Γ

Γ ⊢ ⊤ :
ℓ Ui

Wt-TT

⊢ Γ

Γ ⊢ tt :ℓ ⊤

Wt-Seq

Γ ⊢ a :
ℓ1 ⊤ Γ ⊢ b :

ℓ C [tt/x]
Γ, x :

ℓ1 ⊤ ⊢ C : Ui ℓ1 ≤ ℓ

Γ ⊢ let tt = aℓ1 in b :
ℓ C [a/x]

P-SeqTT

b0 ⇒ b1
let tt = ttℓ in b0 ⇒ b1

Fig. 5. Typing and parallel reduction rules (pairs, unit)

well typed at the first component’s level ℓ0. This is because the type of the second component is

dependent on the first component at level ℓ0. Rule Wt-Proj1 tells us that the 𝜋
ℓ0
1
a is at level ℓ , but

we need the extra side condition that 𝜋
ℓ0
1
a is typed at level ℓ0 for B[𝜋 ℓ0

1
a/x] to be well-formed.

Wt-proj1

Γ ⊢ a :
ℓ Σx :

ℓ0 A. B
ℓ0 ≤ ℓ

Γ ⊢ 𝜋 ℓ0
1
a :

ℓ A
===========================

Wt-proj2

Γ ⊢ a :
ℓ Σx :

ℓ0 A. B
Γ ⊢ 𝜋 ℓ0

1
a :

ℓ0 A

Γ ⊢ 𝜋 ℓ0
2
a :

ℓ B[𝜋 ℓ0
1
a/x]

=================================

Wt-proj2alt

Γ ⊢ a :
ℓ Σx :

ℓ0 A. B

Γ ⊢ 𝜋 ℓ0
2
a :

ℓ let (yℓ0 , z) = aℓ in B[y/x]
=========================================================

Fig. 6. Admissible typing rules for pair projections

However, this is not the only way we can ensure the well-typedness of the second projection.

The alternate admissible rule Wt-proj2alt only requires well-typedness of the pair and not of the

first projection. Here, the type of the second projection matches on the pair and then substitutes in

the first component inside of B, rather than matching on the pair within the substitution in B. The
second projection is therefore well typed regardless of the well-typedness of the first projection. In

particular, we can take the second projection of a higher-level pair even if it contains a lower-level

first component. This was not possible when pair projections were the primitive operators on a

pair and not the eliminator we have, which is strictly more expressive.

The typing rules for the unit type (rule Wt-Unit), its sole inhabitant (rule Wt-TT), and the

dependent eliminator (ruleWt-Seq) are standard, with reduction given by rule P-SeqTT. In ruleWt-

Seq, the level constraint on the scrutinee exists for the same reason as in the pair eliminator.

The box type Tℓ0 A [Abadi et al. 1999] can be seen as a pair with information only in its first

component, of which we only ever take the first projection, and can be encoded as a unary tuple.

Tℓ0 A := Σx :
ℓ0 A.⊤ boxℓ0 a := (aℓ0 , tt) unboxℓ0a := 𝜋

ℓ0
1
a

By these encodings and the typing rules for pairs, we obtain the admissible typing rules for box

types (Wt-T
5
), boxes (Wt-Box

6
), and unboxing (Wt-Unbox

7
) in Figure 7. The level constraint in

Wt-Unbox comes from the corresponding constraint in rule Wt-Let, and intuitively says that the

only values that can be unboxed are observable ones.

5 admissible.v:T_T 6 admissible.v:T_Box 7 admissible.v:T_Unbox
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Wt-T

Γ ⊢ A :
ℓ Ui

Γ ⊢ Tℓ0 A :
ℓ Ui

======================

Wt-Box

Γ ⊢ a :
ℓ0 A

Γ ⊢ boxℓ0 a :
ℓ Tℓ0 A

============================

Wt-Unbox

Γ ⊢ a :
ℓ Tℓ0 A ℓ0 ≤ ℓ

Γ ⊢ unboxℓ0a :
ℓ A

====================================

Fig. 7. Admissible typing rules for box types

The indistinguishability rules for pair types, the unit type, and their eliminators are given

in Figure 8. The primary use case of the box type is to be able to enclose higher-level terms

and to treat them as indistinguishable from one another by a lower-level observer. That is, Ξ ⊢
boxH a ≡L boxH b ought to hold regardless of a and b. This idea generalizes to pairs by using

guarded indistinguishability when comparing first components in rule I-Pair, similar to how

function arguments are compared. In rules I-Let and I-Seq, the constraints ℓ1 ≤ ℓ are required due

to their presence in rules Wt-Let and Wt-Seq.

I-Sig

Ξ ⊢ A0 ≡ℓ A1

Ξ, x : ℓ0 ⊢ B0 ≡ℓ B1
Ξ ⊢ Σx :

ℓ0 A0 . B0 ≡ℓ Σx :
ℓ0 A1. B1

I-Pair

Ξ ⊢ a0 ≡ℓ
ℓ0
a1

Ξ ⊢ b0 ≡ℓ b1
Ξ ⊢ (a0ℓ0 , b0) ≡ℓ (a1ℓ0 , b1)

I-Unit

Ξ ⊢ ⊤ ≡ℓ ⊤

I-TT

Ξ ⊢ tt ≡ℓ tt

I-Let

Ξ ⊢ a0 ≡ℓ a1 Ξ, x : ℓ0, y : ℓ1 ⊢ b0 ≡ℓ b1 ℓ1 ≤ ℓ

Ξ ⊢ let (xℓ0 , y) = a0ℓ1 in b0 ≡ℓ let (xℓ0 , y) = a1ℓ1 in b1

I-Seq

Ξ ⊢ a0 ≡ℓ a1 Ξ ⊢ b0 ≡ℓ b1 ℓ1 ≤ ℓ

Ξ ⊢ let tt = a0ℓ1 in b0 ≡ℓ let tt = a1ℓ1 in b1

Fig. 8. Indistinguishability rules (pairs, unit)

3.4 Propositional equality

Wt-Eq

Γ ⊢ a :
ℓ0 A Γ ⊢ b :

ℓ0 A ℓ0 ≤ ℓ

Γ ⊢ a =ℓ0 b :
ℓ Uj

Wt-Refl

Γ ⊢ a :
ℓ0 A

Γ ⊢ refl :
ℓ a =ℓ0 a

P-JRefl

c0 ⇒ c1
J c0 reflℓ ⇒ c1

Wt-J

Γ ⊢ A : Ui Γ ⊢ a :
ℓ1 A Γ ⊢ b :

ℓ1 A Γ ⊢ p :
ℓ2 a =ℓ0 b

Γ, x :
ℓ1 A, y :

ℓ2 a =ℓ0 x ⊢ C :
ℓ0 Uj Γ ⊢ c :ℓ C [a/x, refl/y] ℓ1 ≤ ℓ0 ℓ2 ≤ ℓ

Γ ⊢ J c pℓ2 :ℓ C [b/x, p/y]
Fig. 9. Typing and parallel reduction rules (equality)

The propositional equality type internalizes the indistinguishability judgment, enabling reasoning

about indistinguishability within DCOI
𝜔
itself. The typing rules for constructs related to the

equality type are given in Figure 9. The type a =ℓ0 b represents the proposition that a and b are

indistinguishable by observers at level ℓ0. By ruleWt-Eq, the endpoints must themselves be well

typed at level ℓ0, since it only makes sense to talk about the indistinguishability of observable terms,

just as rule I-Var only holds for observable variables. The observer level ℓ0 must also be bounded

by the overall level ℓ to ensure the consistency of the equational theory, as explained by Liu et al.

[2024]. Its constructor is the usual reflexivity proof refl, given by ruleWt-Refl.

In ruleWt-J, the eliminator J takes as scrutinee an equality proof p annotated at level ℓ2, along

with a body c. The scrutinee must be well typed as an equality between a and b of type A, observed
at level ℓ0. The observer, so to speak, is the motive C, abstracted over the right-hand side of the
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equality x (the left-hand side being fixed at a) and the equality proof itself y. As the observer, the
motive must be well typed at level ℓ0. The type of the body is the motive instantiated with a and
refl, while the type of the fully-applied eliminator is the motive instantiated with b and p. The
levels of x and y must therefore match the levels of b and p, respectively. Because by rule P-JRefl

the eliminator reduces on refl to the body, the level of the body must match the level ℓ of the

overall eliminator. The level of the scrutinee ℓ2 is bounded above by the observer level ℓ , and thus

eliminating an equality proof always counts as an observation even though no branching happens.

We treat the equality proof as observable to retain decidable type conversion (Section 6.3). The

non-exact match between ℓ2 and ℓ makes the rule more flexible than a rule that simply requires

them to be equal. The necessity of the flexibility is discussed in Section 6.1.

The other level constraint in ruleWt-J, which allows the equality endpoints to be typed at a level

ℓ1 possibly lower than the equality observer level ℓ0, increases the expressivity of the eliminator,

since the motive C is able to abstract over x at the lower level ℓ1. In particular, it allows us to show

the following lemma.

Lemma 3.3 (Downgrade).
8 Suppose Γ ⊢ a :

ℓ0 A and Γ ⊢ b :
ℓ0 A. If Γ ⊢ p :

ℓ a =ℓ1 b and ℓ0 ≤ ℓ1, then
Γ ⊢ J refl pℓ :ℓ a =ℓ0 b.

Downgrade permits lowering the observer level of an equality proof. Here, the motive is a =ℓ0 x,
which would not have been well typed if the level of x had to match the observer level ℓ1 of

the equality p being eliminated. Intuitively, this rule internalizes the idea that if two terms are

indistinguishable at some higher level, then they also are at a lower level, since a lower-level

indistinguishability is coarser than a higher-level one, and treats more terms as indistinguishable.

I-Eq

Ξ ⊢ a0 ≡ℓ a1
Ξ ⊢ b0 ≡ℓ b1 ℓ0 ≤ ℓ

Ξ ⊢ a0 =ℓ0 b0 ≡ℓ a1 =ℓ0 b1

I-Refl

Ξ ⊢ refl ≡ℓ refl

I-J

Ξ ⊢ p0 ≡ℓ p1
Ξ ⊢ c0 ≡ℓ c1 ℓ2 ≤ ℓ

Ξ ⊢ J c0 p0ℓ2 ≡ℓ J c1 p1ℓ2

Fig. 10. Indistinguishability rules (equality)

The shape of the indistinguishability rules for the propositional equality constructs in Figure 10

are unsurprising: rules I-Eq, I-Refl, and I-J assert indistinguishability of the terms given indistin-

guishability of each pair of subterms. The constraints ℓ0 ≤ ℓ in rule I-Eq and ℓ2 ≤ ℓ in rule I-J are

required due to their presence in rules Wt-Eq andWt-J respectively.

4 Syntactic Metatheory
In this section, we develop the syntactic metatheory of DCOI

𝜔
, ultimately culminating in subjection

reduction, i.e. type preservation of typing with respect to parallel reduction. Because the syntactic

metatheory has already been established for DCOI by Liu et al. [2024], here we only state without

proof the most important lemmas, some of which are used in the next section for the semantic

metatheory. Nevertheless, everything has been mechanized in Coq, and the development can be

found in our public repository at under the proofs/theories directory.
Definitions, lemmas, and theorems given here are annotated with a footnote to the corresponding

file and top-level name in the development. Some lemmas are presented as admissible derivation

rules of the corresponding judgment, which are written with a double horizontal bar instead of a

single bar. Their corresponding mechanizations are annotated where mentioned in the prose.

8 admissible.v:T_Down_Alt
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4.1 Preliminaries
As indistinguishability and definitional equality involve a level context, we require a level checking

judgment Ξ ⊢ a : ℓ on terms to be able to prove some substitution lemmas. The judgment specifies

the dependency level that a term may be assigned. In later sections, we will see that semantic

typing and the logical relation are defined over level checked terms. The rules for the judgment

correspond exactly to stripping out all typing information from the typing rules, leaving only the

levels. We omit them here, but they are listed in Appendix A.4.

L-subst

Ξ, x : ℓ0 ⊢ b : ℓ

Ξ ⊢ a : ℓ0

Ξ ⊢ b[a/x] : ℓ
=====================

L-sub

Ξ ⊢ a : ℓ0
ℓ0 ≤ ℓ1

Ξ ⊢ a : ℓ1

=============

I-subst

Ξ, x : ℓ0 ⊢ b0 ≡ℓ b1
Ξ ⊢ a : ℓ0

Ξ ⊢ b0 [a/x] ≡ℓ b1 [a/x]
====================================

I-cong

Ξ, x : ℓ0 ⊢ b : ℓ

Ξ ⊢ a0 ≡ℓ
ℓ0
a1

Ξ ⊢ b[a0/x] ≡ℓ b[a1/x]
====================================

I-down

Ξ ⊢ a ≡ℓ0 b Ξ ⊢ a ≡ℓ1 c

Ξ ⊢ a ≡ℓ0∧ℓ1 b
=========================================

Wt-subst

Γ ⊢ a :
ℓ0 A

Γ, x :
ℓ0 A ⊢ b :

ℓ B

Γ ⊢ b[a/x] :ℓ B[a/x]
===============================

Wt-sub

Γ ⊢ a :
ℓ0 A ℓ0 ≤ ℓ1

Γ ⊢ a :
ℓ1 A

=================================

Fig. 11. Admissible rules for level checking, indistinguishability, and type checking

The level checking and indistinguishability judgments satisfy some standard properties, listed as

admissible rules in Figure 11. L-subst
9
and I-subst

10
permit substituting in a level-checked term

of the appropriate level in place of a variable of that level in the context. Indistinguishability also

satisfies a congruence property I-cong
11
, where indistinguishable terms may be substituted into

a level-checked term. Level checking is subsumptive (L-sub
12
): the level of a level-checked term

may be raised. Indistinguishability satisfies a downgrade property (I-down
13
), where knowing that

a term is indistinguishable from another at two different levels permits concluding that it is also

indistinguishable at the meet of the levels.

The key lemmas of parallel reduction are the diamond property and confluence, which state that

if a term reduces to two different terms, those two terms themselves must converge back to the

same term. The proof uses the notion of complete development
14
by Takahashi [1995].

Lemma 4.1 (Diamond).
15 If a ⇒ b0 and a ⇒ b1, then there exists c s.t. b0 ⇒ c and b1 ⇒ c.

Lemma 4.2 (Confluence).
16 If a ⇒∗ b0 and a ⇒∗ b1, then there exists c s.t. b0 ⇒∗ c and b1 ⇒∗ c.

Injectivity of type constructors are trivial to prove in our system since definitional equality is

directly defined in terms of indistinguishability and parallel reduction, both of which are injective

by definition. Extra effort is needed to show that the definitional equality is transitive, which

requires downgrade (I-down), Confluence, and Simulation.

Lemma 4.3 (Transitivity of eqality).
17 If Ξ ⊢ a ≡ b and Ξ ⊢ b ≡ c, then Ξ ⊢ a ≡ c.

4.2 Type preservation
Like level checking, type checking admits substitution (Wt-subst

18
) and subsumption (Wt-sub

19
),

as stated in Figure 11. Due to ruleWt-Conv, deducing the well-typedness of subterms of a well-

typed term doesn’t follow immediately from inversion and requires separate generation lemmas,

9 geq.v:iok_subst 10 geq.v:ieq_iok_subst 11 geq.v:ieq_morphing_mutual 12 geq.v:iok_subsumption
13 geq.v:ieq_downgrade_mutual 14 par.v:tstar 15 par.v:Par_confluent 16 par.v:Pars_confluent
17 conv.v:conv_trans 18 preservation.v:subst_Syn 19 preservation.v:subsumption
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which are standard and omitted here. One notable consequence is that if refl is a propositional

equality between a and b at some observer level ℓ0, then they are definitionally equal at that

level. Finally, we are able to prove type preservation, which proceeds by induction on the typing

derivation.

Lemma 4.4.
20 If Γ ⊢ refl :

ℓ a =ℓ0 b, then |Γ | ⊢ a ⇔ℓ0 b.

Theorem 4.5 (Type preservation).
21 If a ⇒ b (or a ⇒∗ b) and Γ ⊢ a :

ℓ A then Γ ⊢ b :
ℓ A.

5 Semantic Metatheory
In this section, we use a logical predicate to show weak normalization and consistency for DCOI

𝜔
.

Due to DCOI
𝜔
’s flexible treatment of type conversion and its support for large elimination, we can-

not directly reuse the proofs found in Abel and Scherer [2012]; Geuvers [1994] through embedding.

We structure the section as follows. In Section 5.1, we present the definition of the logical predicate

and its properties. In Section 5.2, we define valid substitutions and semantic typing judgments based

on the logical predicate and then prove the fundamental theorem, which states that all syntactically

well-typed terms must be semantically well-typed, from which we derive weak normalization and

consistency. In Section 5.3, we combine weak normalization and the standardization theorem to

recover a decidable type conversion algorithm.

5.1 A logical predicate for DCOI𝜔

To characterize semantically well-behaved terms through the logical predicate, we use the notions

of neutral forms ne a and normal forms nf a , which characterize sets of terms that are free of

redexes. Our definition of neutral forms excludes terms like (𝜆𝑥H. 𝑎) bL that are stuck because of

mismatching levels. Furthermore, we consider absurd a as neutral as long as a is in normal form

since there are no constructors of the ⊥ type. The definitions of neutral and normal forms are

otherwise standard and can be found in Appendix A.5. Weakly normalizing terms are then terms

which reduce to a normal form.

Definition 5.1 (Weakly normalizing terms).22 Given a term a, if there exists some term b such that

a ⇒∗ b and nf b (resp. ne b), then we say that a weakly normalizes to a normal (resp. neutral) form,

which we denote as wnf a (resp. wne a ).

The following lemma captures the idea that neutral and normal forms are free of redexes.

Lemma 5.2.
23 If nf a or ne a, then for all b such that a ⇒ b, we have a = b.

Figure 12 gives the definition of our logical predicate. The omitted rules for the naturals can be

found in Appendix A.6. Similar to Abel and Scherer [2012]’s semantic interpretation of types, we

define our logical predicate JΞ ⊨i AK ↘ 𝑆 as an inductive relation recursively defined over the

universe level i, where 𝑆 is a family of terms indexed by dependency levels. The judgment 𝑎 ∈ 𝑆 (ℓ)
indicates that a is a term belonging to the set in 𝑆 indexed by ℓ . When constructing indexed sets, we

use ℓ .{a | . . .} to indicate a family of sets parameterized by ℓ . The judgment JΞ ⊨i AK ↘ 𝑆 states

that under level context Ξ and universe level i, the type A is interpreted as the family of sets 𝑆 .

For concision, we introduce semantic inhabitance to avoid mentioning the type well-formedness

side condition when talking about a term inhabiting the set interpretation of a type.

Definition 5.3 (Semantic inhabitance). Given a context Ξ and a level ℓ , we say that a semantically
inhabits the type A at level ℓ if there exists some i and 𝑆 such that JΞ ⊨i AK ↘ 𝑆 and 𝑎 ∈ 𝑆 (ℓ).
20 preservation.v:Wt_Refl_Coherent 21 preservation.v:subject_reduction,preservation.v:subject_reduction_star
22 normalform.v:wn, normalform.v:wne 23 normalform.v:nf_refl
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(Auxiliary notation)

b ∈ Π̂(𝑆 ℓ0
𝐴
, 𝑅ℓ ) ≜ ∀𝑎, 𝑆𝐵, 𝑎 ∈ 𝑆𝐴 (ℓ0) → 𝑅(𝑎, 𝑆𝐵) → b aℓ0 ∈ 𝑆𝐵 (ℓ)

c ∈ Σ̂(𝑆 ℓ0
𝐴
, 𝑅ℓ ) ≜ ∃𝑎, 𝑏, c ⇒∗ (aℓ0 , b) ∧ 𝑎 ∈ 𝑆𝐴 (ℓ0) ∧ (∀𝑆𝐵, 𝑅(𝑎, 𝑆𝐵) → 𝑏 ∈ 𝑆𝐵 (ℓ))

p ∈ (Ξ ⊢ a =̂ℓ0 b) ≜ Ξ ⊢ p : ℓ ∧ p ⇒∗ refl ∧ Ξ ⊢ a ⇔ℓ0 b
JΞ ⊨j AK ≜ ∃𝑆, JΞ ⊨j AK ↘ 𝑆

JΞ ⊨i AK ↘ 𝑆 (Logical predicate)

SWt-Ne

neA

JΞ ⊨i AK ↘ ℓ .{a | Ξ ⊢ a : ℓ ∧wne a}

SWt-Eq

JΞ ⊨i a =ℓ0 bK ↘ ℓ .{p | p ∈ (Ξ ⊢ a =̂ℓ0 b) ∨wne p}

SWt-Pi

JΞ ⊨i AK ↘ 𝑆𝐴 ∀𝑎, 𝑎 ∈ 𝑆𝐴 (ℓ0) → ∃𝑆𝐵, 𝑅(𝑎, 𝑆𝐵)
∀𝑎, 𝑆𝐵, 𝑎 ∈ 𝑆𝐴 (ℓ0) → 𝑅(𝑎, 𝑆𝐵) → JΞ ⊨i B[a/x]K ↘ 𝑆𝐵

JΞ ⊨i Πx :
ℓ0 A. BK ↘ ℓ .{b | Ξ ⊢ b : ℓ ∧ b ∈ Π̂(𝑆 ℓ0

𝐴
, 𝑅ℓ )}

SWt-Empty

JΞ ⊨i ⊥K ↘ ℓ .{a | Ξ ⊢ a : ℓ ∧wne a}

SWt-Sigma

JΞ ⊨i AK ↘ 𝑆𝐴 ∀𝑎, 𝑎 ∈ 𝑆𝐴 (ℓ0) → ∃𝑆𝐵, 𝑅(𝑎, 𝑆𝐵)
∀𝑎, 𝑆𝐵, 𝑎 ∈ 𝑆𝐴 (ℓ0) → 𝑅(𝑎, 𝑆𝐵) → JΞ ⊨i B[a/x]K ↘ 𝑆𝐵

JΞ ⊨i Σx :
ℓ0 A. BK ↘ ℓ .{c | Ξ ⊢ c : ℓ ∧ (c ∈ Σ̂(𝑆 ℓ0

𝐴
, 𝑅ℓ ) ∨wne c)}

SWt-Step

A ⇒ B JΞ ⊨i BK ↘ 𝑆

JΞ ⊨i AK ↘ 𝑆

SWt-Unit

JΞ ⊨i ⊤K ↘ ℓ .{a | Ξ ⊢ a : ℓ ∧ (a ⇒∗ tt ∨wne a)}

SWt-Univ

𝑗 < 𝑖

JΞ ⊨i UjK ↘ ℓ .{A | Ξ ⊢ A : ℓ ∧ JΞ ⊨j AK}
Fig. 12. Logical predicate

In rules SWt-Pi and SWt-Sigma, the metavariable 𝑅 represents a relation between terms and the

indexed family of terms 𝑆 . Ignoring the conclusion of the rules, SWt-Pi and SWt-Sigma share the

same preconditions ensuring their well-formedness: for every term a that semantically inhabits the

typeA at level ℓ0, the type B[a/x] is well-formed. In the function case, the definition of b ∈ Π̂(𝑆 ℓ0
𝐴
, 𝑅ℓ )

specifies the semantic inhabitants of a function type as the set of terms that maps well-behaved

inputs to well-behaved outputs.

The logical predicate takes in a level context Ξ as a parameter to ensure that 𝑆 only includes

terms that level check at the indexed level. This property is formally stated as follows and can be

proven by straightforward induction on the logical predicate.

Lemma 5.4 (Escape).
24 If JΞ ⊨i AK ↘ 𝑆 and a ∈ 𝑆 (ℓ), then Ξ ⊢ a : ℓ .

We refer to Lemma 5.4 as the escape lemma as it is reminiscent of the escape lemmas by Abel

and Scherer [2012] and Adjedj et al. [2024], though instead of escaping from the logical predicate

to syntactic typing, we only require the much weaker level checking, which will be necessary to

show that indistinguishable types have the same interpretation.

Similar to its syntactic counterpart, the logical predicate satisfies the subsumption property,

proven by straightforward induction using L-sub.

Lemma 5.5 (Subsumption for the logical predicate).
25 Suppose JΞ ⊨i AK ↘ 𝑆 . If ℓ0 ≤ ℓ1 and

a ∈ 𝑆 (ℓ0), then a ∈ 𝑆 (ℓ1).
24 semtyping.v:InterpUniv_Ok 25 semtyping.v:InterpUnivN_subsumption
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Next, we show some properties which will be useful for proving the fundamental theorem. We

omit some uses of syntactic lemmas about reduction and indistinguishability in the proof sketches.

The logical predicate satisfies the following inversion principles. They are not immediately

obtainable by inverting the derivation because we close our interpretation with parallel reduction

in rule SWt-Step. For brevity, we show only the cases for equality, function, and empty types.

Lemma 5.6 (Inversion of the logical predicate (selected)).

(1) 26 If JΞ ⊨i a =ℓ0 bK ↘ 𝑆 , then 𝑆 = ℓ .{p | Ξ ⊢ p : ℓ ∧ (p ∈ (Ξ ⊢ a =̂ℓ0 b) ∨wne p)}.
(2) 27 If JΞ ⊨i Πx :

ℓ0 A. BK ↘ 𝑆 , then there exist 𝑆𝐴 and 𝑅 such that following hold:
• 𝑆 = ℓ .{b | Ξ ⊢ b : ℓ ∧ b ∈ Π̂(𝑆 ℓ0

𝐴
, 𝑅ℓ )};

• JΞ ⊨i AK ↘ 𝑆𝐴;
• ∀𝑎, 𝑎 ∈ 𝑆𝐴 (ℓ0) → ∃𝑆𝐵, 𝑅(𝑎, 𝑆𝐵); and
• ∀𝑎, 𝑆𝐵, 𝑎 ∈ 𝑆𝐴 (ℓ0) → 𝑅(𝑎, 𝑆𝐵) → JΞ ⊨i B[a/x]K ↘ 𝑆𝐵 .

(3) 28 If JΞ ⊨i ⊥K ↘ 𝑆 , then 𝑆 = ℓ .{a | Ξ ⊢ a : ℓ ∧wne a}.

Proof. Immediate by induction on the derivation of the logical predicate. □

The set of terms that semantically inhabit a type is closed by expansion (i.e. backward reduction).

Lemma 5.7 (Backward closure).
29 Suppose JΞ ⊨i AK ↘ 𝑆 and Ξ ⊢ a : ℓ . If a ⇒ b and b ∈ 𝑆 (ℓ),

then a ∈ 𝑆 (ℓ).

Proof. By induction on the derivation of the logical predicate. The SWt-Univ case requires

SWt-Step, the backward closure property baked into the definition of the logical predicate. All

other cases are trivial. □

The logical predicate satisfies cumulativity: if a type has an interpretation at a lower level, then

it must also have the same interpretation at a higher level.

Lemma 5.8 (Cumulativity).
30 If JΞ ⊨i AK ↘ 𝑆 and i ≤ j, then JΞ ⊨j AK ↘ 𝑆 .

Proof. By induction on the derivation of JΞ ⊨i AK ↘ 𝑆 and transitivity of ≤. □

Rule SWt-Step closes the interpretation of types under expansion. We can also show that the

interpretation of types is preserved under forward reduction through the following lemma.

Lemma 5.9 (Reduction preserves interpretation).
31 If JΞ ⊨i AK ↘ 𝑆 and A ⇒ B, then

JΞ ⊨i BK ↘ 𝑆 .

Proof. By induction on the derivation of JΞ ⊨i AK ↘ 𝑆 . Rule SWt-Step is the only interesting

case, using the Diamond property to reconcile two potentially distinct reductions from A. □

Next, we prove that the logical predicate is functional. That is, given a context Ξ and a universe

level i, a type A can correspond to at most one interpretation 𝑆 .

Lemma 5.10 (Functionality).
32 If JΞ ⊨i AK ↘ 𝑆0 and JΞ ⊨i AK ↘ 𝑆1, then 𝑆0 = 𝑆1.

Proof. By induction on the derivation of JΞ ⊨i AK ↘ 𝑆0. The SWt-Step case is immediate

by Lemma 5.9. For all other cases, the conclusion follows by applying the inversion properties

(Lemma 5.6) on JΞ ⊨i AK ↘ 𝑆1. □

26 semtyping.v:InterpUnivN_Eq_inv 27 semtyping.v:InterpUnivN_Fun_inv 28 semtyping.v:InterpUnivN_Void_inv
29 semtyping.v:InterpUnivN_back_clos 30 semtyping.v:InterpUnivN_cumulative
31 semtyping.v:InterpUnivN_preservation 32 semtyping.v:InterpUnivN_deterministic
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The logical predicate is functional not only for types that are syntactically equal, but also for

types that are indistinguishable. This property is needed to fully justify the soundness of the type

conversion rule, since the type conversion involves both reduction and indistinguishability.

Lemma 5.11 (Functionality for indistinguishable types).
33 If JΞ ⊨i AK ↘ 𝑆0, JΞ ⊨i BK ↘ 𝑆1,

and Ξ ⊢ A ≡ℓ B for some ℓ , then 𝑆0 = 𝑆1.

Proof. The argument is similar to the one for Lemma 5.10. We start by induction on the

derivation of JΞ ⊨i AK ↘ 𝑆0. For case SWt-Step, we need both Lemma 5.9 and Simulation. For

other cases, we apply the inversion properties on JΞ ⊨i BK ↘ 𝑆1.

The cases for function and pair types both require one extra step to complete the proof. Consider

the case where A = Πx :
ℓ0 A0. B0 and B = Πx :

ℓ0 A1. B1. The induction hypothesis says that for

every term a that semantically inhabits A0, if a type C is indistinguishable from B0 [a/x], then C
and B0 [a/x] have the same meaning. To complete the proof, we use the induction hypothesis and

instantiate the variable C with the type B1 [a/x] and prove that B0 [a/x] is indistinguishable from
B1 [a/x]. From the premise that Πx :

ℓ0 A0. B0 and Πx :
ℓ0 A1. B1 are indistinguishable, we already

know that B0 and B1 are indistinguishable. To prove that B0 [a/x] and B1 [a/x] are indistinguishable,
we apply I-subst. This requires a to be checked at level ℓ0, which follows from a semantically

inhabiting A0 via Escape. □

The last main property is adequacy, which establishes the connection between the inhabitants

of the logical predicate and terms that weakly normalize to normal or neutral forms, but we first

need some useful facts about normal forms. Following Geuvers [1994], we introduce a dummy

constant d to the set of terms for presentation purposes. The constant d is a neutral term that level

checks under any context and parallel reduces only to itself. First, reductions and normal forms are

preserved when we undo substitutions involving d.

Lemma 5.12 (Antirenaming for Par).
34 If a[d/x] ⇒ b, then there exists some term b0 such that

b = b0 [d/x] and a ⇒ b0.

Lemma 5.13 (Antirenaming for normal and neutral forms).
35 If nf a[d/x] (resp. ne a[d/x]),

then nf a (resp. ne a).

From Lemmas 5.12 and 5.13, we derive the following corollary about weak normalization.

Lemma 5.14 (Antirenaming for weak normalization).
36 If wnf a[d/x], then wnf a.

In Geuvers [1994], the d constant can be defined as syntactic sugar for a fresh variable. However,

this is not possible in DCOI
𝜔
because of the scoping constraint imposed by level checking. Instead,

we define d as absurd⊥. Note that the term appearing in the body of absurd is flexible: all we need

is a term in normal form that has no reference to variables, so we do not violate scoping.

Finally, we state and prove the adequacy lemma.

Lemma 5.15 (Adeqacy).
37 If JΞ ⊨i AK ↘ 𝑆 , then wnf A and the following hold:

• If 𝑎 ∈ 𝑆 (ℓ), then wnf a;
• If Ξ ⊢ a : ℓ and wne a, then 𝑎 ∈ 𝑆 (ℓ).

Proof. By induction on the derivation of JΞ ⊨i AK ↘ 𝑆 . The only interesting part of the proof

is showing normalization for well-formed function and pair types. We focus on function types, and

the proof for pair types is almost identical.

33 semtyping.v:InterpUnivN_IEq 34 normalform.v:Par_antirenaming 35 normalform.v:ne_nf_renaming_with_d
36 normalform.v:wn_antirenaming 37 semtyping.v:adequacy
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In the function case, we have A = Πx :
ℓ0 A0. B0. By the induction hypothesis, we already know

wnf A0 and for all terms a that semantically inhabit A0, the term B0 [a/x] is weakly normalizing.

To show that Πx :
ℓ0 A0. B0 is weakly normalizing, it suffices to show that B0 is weakly normalizing.

By the induction hypothesis for A0, we also know that if Ξ ⊢ a : ℓ and a is a neutral term, then

a semantically inhabits A0. We pick d for a and deduce that B0 [d/x] is weakly normalizing. By

Lemma 5.14, we conclude that B0 is also weakly normalizing. □

5.2 Soundness
To define semantic well-typedness, we need to first define the notion of valid substitutions, also

referred to as valuations. While we continue to use named variables rather than de Bruijn indices,

in this section we frame substitution in terms of substitution maps (or simply substitutions for short)
and simultaneous substitutions.

Definition 5.16 (Substitution maps). A substitution map 𝜌 is a mapping from variables to terms.

We use dom(𝜌) to denote the variables in the domain of 𝜌 , 𝜌 (𝑥) the term to which 𝜌 maps x, � the
identity substitution map, (𝜌, a/x) the extension of 𝜌 by a mapping from x to a, and a[𝜌] the
simultaneous substitution of the variables 𝑥 ∈ dom(𝜌) in a by 𝜌 (𝑥). The singleton substitution

map a/x is then defined as (�, a/x), the single extension of the identity substitution map.

Definition 5.17 (Valid substitutions).38 A substitution map is a valid substitution from Γ to

Δ, written Δ ⊨ 𝜌 : Γ , if for every x :
ℓ A ∈ Γ, |Δ| ⊢ 𝜌 (x) : ℓ holds, and for all 𝑖 , 𝑆 such that

J|Δ| ⊨i A[𝜌]K ↘ 𝑆 , we have 𝜌 (𝑥) ∈ 𝑆 (ℓ).

By definition, every term 𝜌 (x) in a valid substitution map 𝜌 from Γ to Δ level checks with respect

to the erased context |Δ|. Applying the substitution then yields a term that level checks.

Lemma 5.18.
39 If |Γ | ⊢ a : ℓ and Δ ⊨ 𝜌 : Γ, then |Δ| ⊢ a[𝜌] : ℓ .

Proof. Immediate by iterating the substitution principle for level checking (L-subst). □

Valid substitutions satisfy the following admissible structural rules.

Lemma 5.19 (Structural rules for valid substitutions).
40

(1) For every Γ, Γ ⊨ � : Γ holds; and
(2) Given Δ ⊨ 𝜌 : Γ, if a semantically inhabits A[𝜌] at level ℓ0 under level context |Δ|, then

Δ ⊨ 𝜌, a/x : Γ, x :
ℓ0 A holds.

Proof. (1) is easily justified by the part of the adequacy lemma that states level-checked neutral

terms (variables in Γ in this case) semantically inhabit any well-formed types.

(2) requires Functionality and Cumulativity to convert the fact that a ∈ 𝑆 (ℓ0) for the specific 𝑆
from the semantic inhabitance to the universal statement that a ∈ 𝑆0 (ℓ0) for arbitrary 𝑗 and 𝑆0 such

that J|Δ| ⊨j A[𝜌]K ↘ 𝑆0, as needed by the definition of valid substitutions. □

Next, we define semantic typing based on valid substitutions and the logical predicate.

Definition 5.20 (Semantic well-typedness).41 A term a is semantically well typed with type A
at level ℓ under context Γ, written Γ ⊨ a :

ℓ A , if for every 𝜌 , Δ, given Δ ⊨ 𝜌 : Γ, the term a[𝜌]
semantically inhabits the type A[𝜌] under the level context |Δ|.

Valid substitutions and semantic well-typedness both satisfy weakening properties, which align

with the intuition that a substitution map for a context Γ also closes over any prefixes of Γ.

38 soundness.v:𝜌_ok 39 soundness.v:iok_𝜌_ok_morphing 40 soundness.v:𝜌_ok_id, soundness.v:𝜌_ok_cons
41 soundness.v:SemWt
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Lemma 5.21 (Weakening for valid substitutions and semantic well-typedness).
42

• 43 If Δ ⊨ 𝜌 : Γ, x :
ℓ A, then Δ ⊨ 𝜌 : Γ.

• 44 If Γ ⊨ a :
ℓ A, then Γ, x :

ℓ0 A ⊨ a :
ℓ A.

Proof. Immediate by the definitions of valid substitutions and semantic well-typedness. □

Given a valid substitution map 𝜌 from Γ to Δ, the validity of 𝜌 does not necessarily imply

the well-formedness of the types in Γ. Instead, the existence of interpretations for types in Γ is

separately provided by the semantic context well-formedness judgment ⊨ Γ .

⊨ �
SWf-nil

⊨ Γ Γ ⊨ A :
ℓ Ui

⊨ Γ, x :
ℓ A

SWf-cons

We now specify the fundamental theorem and provide proof sketches for the interesting cases.

Theorem 5.22 (Fundamental theorem).
45 If Γ ⊢ a :

ℓ A then Γ ⊨ a :
ℓ A; if ⊢ Γ then ⊨ Γ.

Proof. Bymutual induction on syntactic typing and well-formedness. Despite the complex setup

of the logical predicate, semantic typing, and their properties, the proof of the fundamental theorem

is straightforward and is similar to the proofs by logical relations for simply typed languages (e.g.
Abel et al. [2019]). For example, theWt-App case proves itself since the idea of valid inputs to valid

outputs is baked into the SWt-Pi case of the logical predicate. For other cases involving eliminators

such as Wt-J and Wt-Let, the scrutinee either reduces to a normal form (i.e. refl or (aℓ0 , b)) or
a neutral term. In the former, the conclusion follows by Backward closure and the induction

hypothesis. In the latter, we know that the elimination form evaluates to a neutral form and thus

semantically inhabits the type by Adequacy. The Wt-Conv case is justified by the preservation of

meaning under expansion (SWt-Par), reduction (Lemma 5.9), and indistinguishability (Lemma 5.11).

The Wt-Var case requires weakening for semantic typing (Lemma 5.21) to bring the semantically

well-formed type to the right scope. □

Corollary 5.23 (Weak normalization for well-typed terms).
46 If Γ ⊢ a : A, then wnf a.

Proof. Immediate by the Fundamental theorem and Lemma 5.19 (1). □

Corollary 5.24 (Logical consistency).
47 The judgment � ⊢ a :

ℓ ⊥ is not derivable for any a or ℓ .

Proof. Immediate by the Fundamental theorem, Lemma 5.19 (1), and Lemma 5.6 (3). □

5.3 Decidability of type conversion
We can use the normalization theorem (Corollary 5.23) to recover a decision procedure for type

conversion. Let 𝑎 {𝑙𝑜 𝑏 be the leftmost-outermost reduction relation for DCOI
𝜔
.

Lemma 5.25 (Standardization).
48 If a ⇒∗ b and nf b, then a {𝑙𝑜 b.

Its proof, which we omit here, is adapted from the standardization proof for the untyped lambda

calculus by Takahashi [1995] and Accattoli et al. [2019].

Corollary 5.26 (Normalization is decidable).
49 Ifwnf a, then its normal form can be computed.

Proof. By Standardization and the fact that leftmost-outermost reduction is deterministic, we

can repeatedly apply leftmost-outermost reduction to find the normal form for a. □
42 soundness.v:𝜌_ok_renaming, soundness.v:weakening_Sem 43 soundness.v:𝜌_ok_renaming
44 soundness.v:weakening_Sem 45 soundness.v:soundness 46 soundness.v:normalization
47 consistency.v:consistency 48 factorization.v:standardization 49 factorization.v:LoRed_normalize
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Lemma 5.27 (Indistinguishability is decidable).
50 If the lattice admits a decidable comparison

operator, then indistinguishability is decidable. That is, given a level context Ξ, terms A and B, and a
level ℓ , there is an algorithm that terminates with true or false depending on whether Ξ ⊢ A ≡ℓ B.

Proof. The algorithm, whose definition we omit, simply recurs over the structure of A. The
correctness proof mirrors the definition of the algorithm and proceeds by induction on A. The
variable case requires that the comparison ℓ0 ≤ ℓ be decidable. □

Definition 5.28 (Algorithm for type conversion).51 Given a level context Ξ and two well-formed

types A and B, the algorithm deciding their equality is as follows.

(1) Run the algorithm from Corollary 5.26 on A and B to obtain normal forms A0 and B0.
(2) Compute the minimal level ℓ at which A0 and B0 can be level checked.

(3) Return the result of the decision procedure from Lemma 5.27 on the relation Ξ ⊢ A0 ≡ℓ B0.

In (3), Simulation justifies the use of normal forms A0 and B0 before we check indistinguishability,
while downgrade (I-down) justifies the use of the lowest possible level ℓ computed from (2).

The only missing piece is the decidability of the algorithm for computing levels in (2). While

conceptually simple, the algorithm depends on the structure of the lattice. For bottomless lattices,

there is no minimal level we can return for values such as ⊥ andUi. Instead, we need to conjure

up a level ℓ that can ignore the most terms possible when comparing A and B. While there are

other sufficient conditions for inferring the level ℓ , such as the size of the lattice being countable,

we focus on the correctness of the algorithm for a lattice with a bottom element.

Theorem 5.29 (Decidability of type conversion with bottom).
52 Given Γ ⊢ a :

ℓ A and
Γ ⊢ B : Ui, the algorithm described in Definition 5.28 decides the relation |Γ | ⊢ A ≡ B if DCOI𝜔 is
instantiated with a lattice with a bottom.

Independent of the underlying lattice structure, the indexed version of definitional equality is

always decidable since it allows us to skip the level inference from step (2).

Theorem 5.30 (Decidability of indexed type conversion).
53 Given a context Ξ, syntactically

well-formed types A and B, and a level ℓ , Ξ ⊢ A0 ⇔ℓ B0 is decidable.

Note that Ξ ⊢ A0 ⇔ℓ B0 is equivalent to the preconditions of rule E-Conv. For finite or countable
lattices, the decision procedure from Theorem 5.30 can be iterated to recover the decidability of

conversion in rule Wt-Conv.

6 Discussion and Future Work
6.1 Scrutinee level constraints
The level of eliminator scrutinees must be bounded by the level of the overall eliminator. In

particular, in ruleWt-J, the level ℓ2 of an equality proof pmust be bounded by that of its elimination

J c pℓ2 , and in rule Wt-Let, the level ℓ1 of a pair a must be bounded by that of its elimination

let (xℓ0 , y) = aℓ1 in b. The bound is required to prove the Simulation property. Suppose that

scrutinees could instead be typed at any level. First, the indistinguishability rules would need to

be updated so that scrutinees are indistinguishable if their level is higher than that of the overall

eliminator, just like in rule I-App. The modified premises are boxed below.

I-J-bad

Ξ ⊢ p0 ≡ℓ
ℓ2
p1 Ξ ⊢ c0 ≡ℓ c1

Ξ ⊢ J c0 p0ℓ2 ≡ℓ J c1 p1ℓ2

I-Let-bad

Ξ ⊢ a0 ≡ℓ
ℓ1
a1 Ξ, x : ℓ0, y : ℓ1 ⊢ b0 ≡ℓ b1

Ξ ⊢ let (xℓ0 , y) = a0ℓ1 in b0 ≡ℓ let (xℓ0 , y) = a1ℓ1 in b1
50 geq.v:IEq_dec 51 iconv_dec.v:convb 52 iconv_dec.v:conv_dec 53 iconv_dec.v:iconv_dec
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As concrete examples, by rule I-J-bad, supposing J c pH were well typed in context Γ at level Lwith
Γ ⊢ p :

H a =L a, we can conclude that |Γ | ⊢ J c reflH ≡L J c pH. The problem is that the left-hand side

reduces to c, while the right-hand side does not necessarily reduce to something indistinguishable

from c, thereby violating simulation. The same issue arises with pairs, where we may be able to

conclude by rule I-Let-bad that |Γ | ⊢ let (xH, y) = (aH, b)H in c ≡L let (xH, y) = 𝑑H in c, and the

left-hand side reduces to c[a/x, b/y], while the right-hand side again does not necessarily reduce

to something indistinguishable from it. Even if the context were empty, simulation still cannot

be proven without knowing a priori that a closed proof of equality p normalizes to refl, or that a
closed term of a pair type normalizes to a pair.

The one exception is the eliminator for the empty type, whose scrutinee may be well typed at any

arbitrary level in ruleWt-Absurd. Since absurd b has no reduction rules beyond the congruence

rule P-Absurd, ignoring b in rule I-Absurd will not violate simulation.

If we try to enforce the scrutinee’s level to be exactly the overall level ℓ , we would not be able

to prove subsumption (Wt-sub), since the level of the scrutinee appears in the context. In both

rulesWt-J andWt-Let, this occurs when type checking the motive C, which abstracts over the

scrutinee. Supposing that both the level of the scrutinee and the overall level are ℓ , subsumption

states that given a derivation at level ℓ , we need to construct a derivation at a higher level ℓ ′. For J
and let, we are given a derivation concluding something of the shape Γ, x :

ℓ · ⊢ C :
ℓ0 Ui, but we

require one of the shape Γ, x :
ℓ ′ · ⊢ C :

ℓ0 Ui, which we are unable to conclude.

6.2 Typed definitional equality and relational semantic models
Following Liu et al. [2024], we formulate DCOI

𝜔
as an instantiation of Barendregt’s Pure Type

Systems with a predicative universe hierarchy. A variation of PTS, referred to as Pure Type Systems

with Judgmental Equality by Adams [2006], replaces the untyped conversion rule from PTS with a

typed equality judgment. While untyped conversion is used in practice by theorem provers such as

Coq, typed equality enables more expressive 𝜂 laws that otherwise cannot be expressed.

Siles and Herbelin [2012] proves the equivalence between typed and untyped Pure Type Systems

in the absence of 𝜂 laws. Would a similar equivalence hold between DCOI
𝜔
and a variant with typed

equality? It turns out that even defining judgmental equality for DCOI
𝜔
is challenging. Consider the

following typed congruence rule for application, which naïvely adds type annotations to rule I-App.

I-AppTy

Γ ⊢ b0 ≡ℓ b1 ∈ Πx :
ℓ0 A. B Γ ⊢ a0 ≡ℓ

ℓ0
a1 ∈ A

Γ ⊢ b0 a0ℓ0 ≡ℓ b1 a1ℓ0 ∈ B[a0/x]
Ignoring the levels, rule I-AppTy is exactly how the application equivalence rule is defined for a

PTS with judgmental equality. However, rule I-AppTy breaks the type correctness property, which

states that Γ ⊢ a ≡ℓ b ∈ A implies Γ ⊢ a :
ℓ A and Γ ⊢ b :

ℓ A.
When ℓ0 ≰ ℓ , the function arguments are not observable, so we do not need to check the equality

between a0 and a1 other than their respective well-typedness. However, DCOI
𝜔
does not prohibit

the type B from depending on the variable x as the type Πx :
ℓ0 A. B can be well formed at a level

unrelated to the observer level ℓ by Regularity. As a result, there is no guarantee that B[a0/x] and
B[a1/x] are indistinguishable types.

As a simple counterexample, we can pick b0 and b1 to be level L polymorphic identity functions

with a level H (thus irrelevant) type parameter. Instantiating a0 and a1 with distinct types, we end

up with two distinct function types B[a0/x] = La0 → a0 and B[a1/x] = La1 → a1. Type correctness
breaks as soon as we add input type annotations to functions. Abel and Scherer [2012] observed

a similar issue in the design of their type-directed conversion algorithm. Their workaround is to

simply reject programs whose types depend on irrelevant arguments.
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The problem of extending DCOI
𝜔
with judgmental equality also directly relates to the problem

of defining a relational model for justifying properties such as extensionality, or a generalized

semantic notion of noninterference that goes beyond our syntactic Simulation property. Since

logical relations are indexed by types, when defining the interpretation for functions, we run into

the same issue where run-time irrelevant arguments that are vacuously related by guarded equality

may result in distinguishable types after being substituted into the output type.

Rather than patching rule I-AppTy with side conditions until syntactic properties such as type

correctness are satisfied, a more pressing problem is whether rule I-AppTy is semantically sound.

The counterexample above for polymorphic identity functions shows that b0 a0ℓ0 and b1 a1ℓ0 do not

necessarily syntactically inhabit both B[a0/x] and B[a1/x]. However, semantically, two instantiated

identity functions with different type annotations do not behave differently at run time.

In fact, we believe it is impossible to construct an example where b0 a0ℓ0 and b1 a1ℓ0 do not behave
like terms from both B[a0/x] and B[a1/x]. To be more adversarial, suppose that B contains a large

elimination so that B[a0/x] and B[a1/x] are incompatible types. If b0 a0ℓ0 and b1 a1ℓ0 evaluate to
different head forms, then semantic soundness would fail. However, knowing that b0 a0ℓ0 and b1 a1ℓ0
are indistinguishable at ℓ already rules out the case where they have different head forms. Therefore,

such a counterexample cannot be derived.

As a result, despite the technical issues demonstrated in this section, we are optimistic that our

logical predicate can be further extended to a relational model to justify more complex properties.

6.3 Casting with irrelevant equalities
Equality type has the special property that there is only one canonical form refl. The fundamental

theorem guarantees that a closed proof of equality can only evaluate to refl. As a result, the

elimination form J c pℓ can be erased to contain only the body c since no information is gained

from matching against a singleton type.

Despite the erasability of equality proofs at runtime, DCOI does not allow casting a relevant term

using an irrelevant proof. In Section 6.1, we see that this restriction is necessary for the simulation

property to hold since an open equality proof can normalize to either refl or to a neutral term.

Do we need to evaluate equality proofs? Suppose that we modify the operational semantics of

DCOI
𝜔
by replacing P-JRefl and the congruence rule with the single rule J c pℓ ⇒ c so that the

J eliminator is erased during evaluation without having to reduce p. In a system with this rule,

because the equality proof is discarded during evaluation, it can be ignored by indistinguishability

and still validate the simulation property.

The addition of this rule does not invalidate logical consistency or the fact that our equational

theory is consistent. However, in the presence of this rule, we lose decidable type conversion. With

a proof of𝐴 = 𝐴 → 𝐴 in the context, one can define a well-typed term that reduces to the diverging

term (𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥), since the J eliminator no longer gets stuck at a bogus equality proof. This

rule also violates type preservation: given a term a of type Nat and a bogus assumption 𝑥 of type

Nat =ℓ ⊥, we have J a xℓ ⇒ a where the former is of type ⊥ but the latter is of type Nat.
Werner [2008] attempts to address these problems while still allowing the irrelevant treatment

of equality proofs. In his system, the elimination form for equalities is annotated with the terms

appearing in the equality. Reduction does not examine the equality proof, but instead proceeds

when the terms on both sides of the equality are convertible. Werner’s rule requires that the terms

in the equality be relevant, which is not always desirable.

It is possible to recover decidable type conversion for a non-strict elimination rule through

annotations [Liu and Weirich 2023], or by exploring beyond intensional equality types [Pujet

and Tabareau 2022]. In future work, we would like to explore the extension of DCOI
𝜔
with these

alternative versions of propositional equality.
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7 Related Work
Dependent types and irrelevance. Many dependent type systems include a notion of irrelevance,

although the term has been used inconsistently and refers to either run-time irrelevance or compile-

time irrelevance. The former refers to the erasure of computationally-irrelevant terms during

compilation to optimize code. The latter erases or ignores irrelevant terms during type conversion

to accept more programs. Here, we liberally use relevance tracking to refer to both concepts.

The Implicit Calculus of Constructions (ICC) [Miquel 2001], its decidable variant ICC* [Barras and

Bernardo 2008], and the Erasure Pure Type System (EPTS) [Mishra-Linger and Sheard 2008] support

irrelevance by including two abstraction forms, distinguishing functions that do and do not use their

arguments. ICC and ICC* ensure that irrelevant variables do not syntactically appear in relevant

computations, whereas EPTS uses a design based on Pfenning [2001] to prevent variables marked

with the irrelevant modality from being used relevantly. Despite the difference in mechanisms,

the languages are similar in expressiveness. In the type of an irrelevant abstraction, ∀𝑥:𝐴.𝐵, the
parameter 𝑥 may relevantly appear in 𝐵. Thus, there is no way to express that the output type of a
function does not depend on its input. ICC and ICC* allow compile-time irrelevance by erasing

irrelevant components before conversion. But, these systems cannot support irrelevent projections

as erasure would allow conversion between distinct types.

In contrast, Pfenning’s modal type system [Pfenning 2001] and its extension by Abel and Scherer

[2012] forbids irrelevant parameters from appearing in both the body of an abstraction and its result

type. As a result, irrelevent function types cannot model type polymorphism, and the system does

not include irrelevant projections. Furthermore, as pointed out by Tejiščák [2020], Pfenning’s style

of relevance tracking prevents the definition of type families indexed by an irrelevant argument.

One such example is the binary type Bin n, whose index n keeps track of the natural number it

corresponds to. To avoid exponential overhead during execution, the index n should be marked

as irrelevant. However, this is impossible with Pfenning’s system as irrelevant arguments are

convertible, but Bin n and Bin m are different types for different m and n.
Liu et al. [2024] design DCOI by observing that the failure of encoding irrelevant type indices

is due to a fixed view of relevance. They generalize the notion of irrelevance as a relative notion

indexed by an observer level. A term and its type can have different views of irrelevance. The

indistinguishability judgment uses the observer level to determine which components of a term

can be discarded during type conversion. This allows DCOI, and thus DCOI
𝜔
, to encode Bin while

still allowing compile-time irrelevance for arguments that are irrelevant for both terms and types.

Mishra-Linger and Sheard [2008] distinguish between extrinsic and intrinsic relevance tracking.

The former determines relevance purely based on how terms are used. All systemswe have discussed

so far, including DCOI and DCOI
𝜔
, are extrinsic systems.

An example of the intrinsic approach is the Prop sort, introduced by Paulin-Mohring [1989],

which identifies computationally irrelevant terms that should be erased during program extraction.

The soundness of erasure during program extraction (referred to as external or post-mortem erasure
by Abel and Scherer [2012]) is ensured by a form of dependency tracking. In Coq, for example, only

singleton types (e.g. equality proofs) or empty types in Prop can be destructed to produce run-time

relevant terms. As discussed in Section 6.3, Coq’s Prop sort is limited to run-time irrelevance for

decidability of type checking. Werner [2008]’s type theory with a proof-irrelevant Prop fails to

satisfy normalization when Prop is impredicative, a result later shown by Abel and Coquand [2020].

Gilbert et al. [2019] introduce the language sMLTT, an extension to MLTT with a proof-irrelevant

sort sProp. Similar to Werner’s system, inhabitants of a type 𝐴 : sProp are treated as definitionally

equal. They introduce an alternative criterion to singleton elimination, which characterizes induc-

tive types that can be safely eliminated from sProp into the relevant universe while preserving
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decidability. They show the consistency of their design for both predicative and impredicative

variants of sProp through a syntactic translation to Extensional Type Theory. Similar to DCOI
𝜔
,

their system allows the empty type to be eliminated from sProp to the relevant universes.

Bracket types and squash types [Awodey and Bauer 2004; Mendler 1990] introduce bracket and

squash operators that remove computational information from types. Inhabitants of a squashed type

are definitionally equal. To ensure consistency, elimination is restricted so that computationally-

relevant terms cannot access the hidden content. Squash types can also be viewed as an intrinsic

treatment of irrelevance since a squashed type is always irrelevant regardless of usage.

Despite the differences between extrinsic and intrinsic irrelevance, they bear many similarities.

For example, irrelevant function types can be implemented as regular function types with a squashed

input type in the systems by Awodey and Bauer [2004]; Gilbert et al. [2019]; Mendler [1990]. For

the other direction, the squash operator can be implemented in the form of a weak irrelevant

dependent pair [Abel and Scherer 2012], similar to our encoding of the box type.

Dependent types and counting. Quantitative type systems provide a type of fine-grained static

analysis that counts the number of times a computation uses each of its inputs. For flexibility,

counting uses an abstract semiring, generalizing type systems for bounded linearity, information

flow, and differential privacy. Using a boolean semiring, quantitative type systems can track

dependency and perform external erasure.

McBride [2016] extends a dependently typed system with usage tracking for computationally

relevant terms. However, the typing judgment in his system fails to admit the substitution property,

an issue that is later addressed by [Atkey 2018] in the design of the Quantitative Type Theory

(QTT). The typing judgment in QTT takes the form Γ ⊢ 𝑀 :
𝜎 𝑇 where 𝜎 ranges over the constants

0 and 1 from the semiring, reminiscent of Pfenning’s ÷ and : modalities. Similar to the system by

McBride [2016], usage tracking does not apply to types and is disabled in type formation rules.

GraD [Choudhury et al. 2021] later gives a more uniform design where type formation rules

are presented in the style of a PTS and share the same judgment form as typing for terms. This

allows one to analyze usage information for a type expression. Unlike QTT, the type soundness

of resource tracking in GraD is proven using a syntactic approach through heap semantics. No

instances of GraD have been proven consistent as a logic.

Graded Modal Dependent Type Theory (GRTT) [Moon et al. 2021] is a predicative type theory

that tracks resource usage separately for types and terms. The fine-grained usage tracking allows

one to recover parametricity by rejecting undesired type- or term-level access of variables. Moon

et al. [2021] take advantage of the usage information to optimize type checking through their

prototype implementation. However, this optimization, while reminiscent of the proof irrelevance

feature discussed in Section 7, is not formalized. Type conversion in GRTT is oblivious of the

usage information. The lack of interaction between modalities and type conversion allows them to

recover strong normalization by adapting strong normalization for CC by Geuvers [1994].

Abel et al. [2023] introduce a graded modal dependent type theory that also allows tracking usage

for both terms and types. Since modalities do not interact with type conversion, they reuse the

technique in Abel et al. [2017] to mechanically prove metatheoretic results including normalization

and decidable type conversion for a standard dependently typed language that is free of usage

tracking. Grading is then defined separately from the typing judgment and their semantics is refined

to account for usage. In DCOI
𝜔
, since type conversion relies on indistinguishability, properties

about dependency tracking must be developed before we define our semantic model.

Dependent types and indistinguishability. The design of DCOI [Liu et al. 2024] and its instantiation
DCOI

𝜔
is directly inspired by the Dependent Dependency Calculus (DDC) [Choudhury et al.

2022]. Similar to DCOI, DDC supports both run-time and compile-time irrelevance. However, it
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achieves this goal by combining two different mechanisms. For run-time irrelevance, DDC uses

a mechanism similar to EPTS [Mishra-Linger and Sheard 2008] to allow erasable irrelevant type

indices. For compile-time irrelevance, it uses the resurrection mechanism from Abel and Scherer

[2012]; Pfenning [2001]. While their system includes a indistinguishability relation similar to ours,

their type conversion rule performs conversion at some fixed level 𝐶 . Liu et al. [2024] show that

as a result, it is difficult to generalize DDC’s conversion rule to support indistinguishability at

different levels, necessary for the elimination of indexed equality types.

Type-theory in color (TTC) [Bernardy and Guilhem 2013] indexes the judgments of the Calculus

of Constructions with sets of colors, called taints, to support run-time erasure and internalize

parametricity. TTC does not include compile-time irrelevance. While DCOI
𝜔
does not internalize

parametricity, TTC’s dependency tracking through taints is similar to dependency levels in DCOI
𝜔
.

However, in TTC, variables can be used only if their taint exactly matches the current taint.

Functions keep track of a set of anti-taints, colors that the argument is oblivious to, in addition to

the set of colors that the argument depends on. The erasure operator ⌊𝑎⌋𝑖 erases all components

dependent on the color 𝑖 from the term 𝑎 and also serves the purpose of interpreting types as

predicates. The ability to shift the view by choosing which color to erase is like the observer

level from the indistinguishability judgment of DCOI
𝜔
. Furthermore, like Abel and Scherer [2012];

Pfenning [2001] and unlike DCOI
𝜔
, in TTC, the same taint is used for checking a term and the

well-formedness of its type. In DCOI
𝜔
, the observer level between terms and types are decoupled.

Sterling and Harper [2022] interpret information flow through the new perspective of phase

distinctions. For each dependency level ℓ , there is a corresponding proposition ⟨ℓ⟩, which, if
inhabited, indicates that program lacks clearance to access data at level ℓ . Data sealed behind

level ℓ thus becomes indistinguishable. In future work, we would like to explore whether we can

reformulate DCOI from this perspective, and how we can leverage the synthetic methods described

in Sterling and Harper [2021, 2022] to give a more semantic account of our non-interference result.

Dependent types and mechanized logical relations. Barras [1996] proves strong normalization

for the Calculus of Constructions in Coq using a generalized notion of Girard’s reducibility candi-

dates [Girard et al. 1989] to model the system. Similar to Geuvers [1994], Barras leverages the fact

that CC does not have large eliminations, so that terms can be erased from type level computations.

The technique is not applicable to systems with large eliminations.

Mechanizing a logical relation for a dependently typed languagewith large eliminations is difficult

because it requires one to specify the set of semantically well-formed types while simultaneously

interpreting those types as sets of terms. Therefore, Abel et al. [2017] use induction–recursion in

Agda to define a Kripke-style logical relation for a dependent type theory with judgmental equality

and large eliminations. The inductive part specifies the set of valid types and the recursive part

assigns meanings to the types. Abel et al. [2023] builds off their mechanization to prove decidable

type checking, consistency, and preservation for a graded modal type theory.

Similar to our approach, Adjedj et al. [2024]; Anand and Rahli [2014]; Wieczorek and Biernacki

[2018] define their logical relations as an inductive type in Coq and then prove functionality a
posteriori. Compared to Abel et al. [2017]’s inductive–recursive model, this approach requires less

power from the metalanguage [Adjedj et al. 2024]. However, an impredicative Prop sort is required

to model an object language with infinitely many universe levels [Anand and Rahli 2014].

8 Conclusion
In this work, we define DCOI

𝜔
, an instantiation of DCOI with a predicative universe hierarchy,

and extended with more expressive elimination forms. We use a syntactic logical predicate to show

that DCOI
𝜔
satisfies normalization, logical consistency, and decidable type conversion in addition
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to the syntactic soundness results previously established; these results are all mechanized in Coq.

Logical consistency makes DCOI
𝜔
suitable for both programming and internalized verification.

In future work, we plan to further explore the use of DCOI
𝜔
as the foundation for a practical

system. First, we will show that the annotations employed by our prototype implementation support

full decidable type checking in the style of a bidirectional system Adjedj et al. [2024]; Dunfield

and Krishnaswami [2013]. In this context we can then explore various extensions of the system,

including dependency level inference, dependency level quantification, and subtyping. We also plan

to investigate applications of dependency tracking beyond irrelevance, such as safe interoperability,

information flow and staged computation.
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A Omitted Judgment Rules
A.1 Naturals
Γ ⊢ a :

ℓ A (Type checking)

Wt-Nat

⊢ Γ

Γ ⊢ Nat :ℓ Ui

Wt-Zero

⊢ Γ

Γ ⊢ zero :
ℓ Nat

Wt-Succ

Γ ⊢ a :
ℓ Nat

Γ ⊢ succ a :
ℓ Nat

Wt-Ind

Γ, z :ℓ0 Nat ⊢ A :
ℓ1 Ui

Γ ⊢ a :
ℓ0 Nat

Γ ⊢ b0 :ℓ0 A[zero/z]
Γ, x :

ℓ0 Nat, y :
ℓ0 A[x/z] ⊢ b1 :ℓ0 A[succ x/z]

ℓ0 ≤ ℓ

Γ ⊢ indℓ0 a b0 (𝜆x y. b1) :ℓ A[a/z]

a ⇒ b (Parallel reduction)

P-IndZero

b0 ⇒ b1
indℓ zero b0 (𝜆x y. c0) ⇒ b1

P-IndSucc

a0 ⇒ a1
b0 ⇒ b1 c0 ⇒ c1

indℓ (succ a0) b0 (𝜆x y. c0) ⇒ c1 [a1/x, indℓ a1 b1 (𝜆x y. c1)/y]

Ξ ⊢ a ≡ℓ b (Indistinguishability)

I-Nat

Ξ ⊢ Nat ≡ℓ Nat

I-Zero

Ξ ⊢ zero ≡ℓ zero

I-Succ

Ξ ⊢ a0 ≡ℓ a1
Ξ ⊢ succ a0 ≡ℓ succ a1

I-Ind

Ξ ⊢ a0 ≡ℓ a1
Ξ ⊢ b0 ≡ℓ b1

Ξ, x : ℓ0, y : ℓ0 ⊢ c0 ≡ℓ c1
ℓ0 ≤ ℓ

Ξ ⊢ indℓ0 a0 b0 (𝜆x y. c0) ≡ℓ indℓ0 a1 b1 (𝜆x y. c1)

Ξ ⊢ a : ℓ (Level checking)

L-Nat

Ξ ⊢ Nat : ℓ

L-Zero

Ξ ⊢ zero : ℓ

L-Succ

Ξ ⊢ a : ℓ

Ξ ⊢ succ a : ℓ

L-Ind

Ξ ⊢ a : ℓ0 Ξ ⊢ b0 : ℓ0
Ξ, x : ℓ0, y : ℓ0 ⊢ b1 : ℓ0

ℓ0 ≤ ℓ

Ξ ⊢ indℓ0 a b0 (𝜆x y. b1) : ℓ

https://doi.org/10.2168/lmcs-4(3:13)2008
https://doi.org/10.1145/3167091
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A.2 Context well-formedness
⊢ Γ (Context well-formedness)

Wf-Nil

⊢ �

Wf-Cons

⊢ Γ Γ ⊢ A : Ui

⊢ Γ, x :
ℓ A

A.3 Parallel reduction
a ⇒ b (Parallel reduction)

P-Var

x ⇒ x

P-Pi

A0 ⇒ A1 B0 ⇒ B1
Πx :

ℓ0 A0. B0 ⇒ Πx :
ℓ0 A1 . B1

P-Abs

b0 ⇒ b1
𝜆xℓ0 . b0 ⇒ 𝜆xℓ0 . b1

P-App

b0 ⇒ b1 a0 ⇒ a1
b0 a0ℓ0 ⇒ b1 a1ℓ0

P-Univ

Ui ⇒ Ui

P-Empty

⊥ ⇒ ⊥

P-Absurd

b0 ⇒ b1
absurd b0 ⇒ absurd b1

P-Eq

a0 ⇒ a1 b0 ⇒ b1
a0 =ℓ0 b0 ⇒ a1 =ℓ0 b1

P-Refl

refl ⇒ refl

P-J

p0 ⇒ p1 c0 ⇒ c1
J c0 p0ℓ ⇒ J c1 p1ℓ

P-Sig

A0 ⇒ A1 B0 ⇒ B1
Σx :

ℓ0 A0. B0 ⇒ Σx :
ℓ0 A1. B1

P-Pair

a0 ⇒ a1 b0 ⇒ b1
(a0ℓ0 , b0) ⇒ (a1ℓ0 , b1)

P-Let

a0 ⇒ a1 b0 ⇒ b1
let (xℓ0 , y) = a0ℓ in b0 ⇒ let (xℓ0 , y) = a1ℓ in b1

P-Unit

⊤ ⇒ ⊤

P-TT

tt ⇒ tt

P-Seq

a0 ⇒ a1 b0 ⇒ b1
let tt = a0ℓ in b0 ⇒ let tt = a1ℓ in b1

P-Nat

Nat ⇒ Nat

P-Zero

zero ⇒ zero

P-Succ

a0 ⇒ a1
succ a0 ⇒ succ a1

P-Ind

a0 ⇒ a1
b0 ⇒ b1 c0 ⇒ c1

indℓ a0 b0 (𝜆x y. c0) ⇒ indℓ a1 b1 (𝜆x y. c1)

a ⇒∗ b (Multi-step parallel reduction)

Ps-Refl

a ⇒ b

a ⇒∗ b

Ps-Trans

a ⇒ b b ⇒∗ c

a ⇒∗ c
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A.4 Level checking

Ξ ⊢ a : ℓ (Level checking)

L-Var

x : ℓ0 ∈ Ξ ℓ0 ≤ ℓ

Ξ ⊢ x : ℓ

L-Pi

Ξ ⊢ A : ℓ

Ξ, x : ℓ0 ⊢ B : ℓ

Ξ ⊢ Πx :
ℓ0 A. B : ℓ

L-Abs

Ξ, x : ℓ0 ⊢ b : ℓ

Ξ ⊢ 𝜆xℓ0 . b : ℓ

L-App

Ξ ⊢ b : ℓ Ξ ⊢ a : ℓ0

Ξ ⊢ b aℓ0 : ℓ

L-Univ

Ξ ⊢ Ui : ℓ

L-Empty

Ξ ⊢ ⊥ : ℓ

L-Absurd

Ξ ⊢ absurd b : ℓ

L-Eq

Ξ ⊢ a : ℓ0
Ξ ⊢ b : ℓ0 ℓ0 ≤ ℓ

Ξ ⊢ a =ℓ0 b : ℓ

L-Refl

Ξ ⊢ refl : ℓ

L-J

Ξ ⊢ p : ℓ0
Ξ ⊢ c : ℓ ℓ0 ≤ ℓ

Ξ ⊢ J c pℓ0 : ℓ

L-Sig

Ξ ⊢ A : ℓ

Ξ, x : ℓ0 ⊢ B : ℓ

Ξ ⊢ Σx :
ℓ0 A. B : ℓ

L-Pair

Ξ ⊢ a : ℓ0 Ξ ⊢ b : ℓ

Ξ ⊢ (aℓ0 , b) : ℓ

L-Let

Ξ ⊢ a : ℓ1
Ξ, x : ℓ0, y : ℓ1 ⊢ b : ℓ

ℓ1 ≤ ℓ

Ξ ⊢ let (xℓ0 , y) = aℓ1 in b : ℓ

L-Unit

Ξ ⊢ ⊤ : ℓ

L-TT

Ξ ⊢ tt : ℓ

L-Seq

Ξ ⊢ a : ℓ1
Ξ ⊢ b : ℓ ℓ1 ≤ ℓ

Ξ ⊢ let tt = aℓ1 in b : ℓ

A.5 Normal and Neutral Forms
ne a (Neutral forms)

Ne-Var

ne x

Ne-App

ne b nf a

ne b aℓ

Ne-Absurd

nf b

ne absurd b

Ne-Seq

ne a nf b

ne let tt = aℓ in b

Ne-J

nf c ne p

ne J c pℓ

Ne-Let

ne a nf b

ne let (xℓ0 , y) = aℓ in b

nf a (Normal forms)

Nf-Pi

nf A nf B

nf Πx :
ℓ A. B

Nf-Abs

nf b

nf 𝜆xℓ . b

Nf-Univ

nf Ui

Nf-Void

nf ⊥

Nf-Unit

nf ⊤

Nf-TT

nf tt

Nf-Eq

nf a nf b nf A

nf a =ℓ b

Nf-Refl

nf refl

Nf-Sig

nf A nf B

nf Σx :
ℓ A. B

Nf-Pair

nf a nf b

nf (aℓ , b)
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A.6 Logical Predicate for Unit and Naturals
⊢N a (Natural Values)

N-Ne

ne a

⊢N a

N-Zero

⊢N zero

N-Succ

⊢N a

⊢N succ a

JΞ ⊨i AK ↘ 𝑆 (Logical predicate)

SWt-Nat

JΞ ⊨i NatK ↘ ℓ .{a | Ξ ⊢ a : ℓ ∧ ∃b, ⊢N b ∧ a ⇒∗ b}
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