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Abstract

Proof by logical relations is a powerful technique that has been used to derive metatheoretic properties
of type systems, such as consistency and parametricity. While there exists a plethora of introductory
materials about logical relations in the context of simply typed or polymorphic lambda calculi, a
streamlined presentation of proof by logical relation for a dependently typed language is lacking. In
this paper, we present a short consistency proof for a dependently typed language that contains a rich
set of features, including a countable universe hierarchy, booleans, and an intensional identity type.
We show that the logical relation can be easily extended to prove the existence of V[-normal forms.
We have fully mechanized the consistency proof using the Coq proof assistant in under 1000 lines of
code, with 500 lines of additional code for the V[-normal form extension.

1 Introduction

This paper presents a short andmechanized proof of logical consistency for _Π , a dependent
type theory with a full predicative universe hierarchy, large eliminations, an intensional
identity type, a boolean base type, and dependent elimination forms.

Our goal with this work is to demonstrate the application of the proof technique of
syntactic logical relations to dependent type theories. Logical relations are a powerful
proof technique, and have been used to show diverse properties such as strong normaliza-
tion (Girard et al., 1989; Geuvers, 1994), contextual equivalence (Constable et al., 1986),
representation independence (Pitts, 1998), noninterference (Bowman and Ahmed, 2015),
compiler correctness (Benton and Hur, 2009; Perconti and Ahmed, 2014), and the decid-
ability of conversion algorithms (Harper and Pfenning, 2005; Abel and Scherer, 2012; Abel,
2013).
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2 Y. Liu et al.

However, tutorial material on syntactic logical relations (Skorstengaard, 2019; Harper,
20220,b; Pierce, 2002, 2004; Harper, 2016) is primarily focused on systems with simple or
polymorphic types. In that context, syntactic logical relations can be defined as simple recur-
sive functions over the structure of types, or (in the case of recursive types) defined over the
evaluation steps of the computation. Yet, neither of these techniques can be used to define a
logical relation in the context of a predicative dependent type theory, so a novice researcher
might be excused for thinking that proofs that use logical relations are not applicable for
such languages.

But this is not the case. Recent authors have developed tour-de-force mechanizations for
the metatheory of modern proof assistants (Wieczorek and Biernacki, 2018; Abel et al.,
2017; Adjedj et al., 2024; Anand and Rahli, 2014), and have relied on logical relations
defined as part of their developments. However, because these proofs show diverse results
about real systems and algorithms, these developments range in size from 10,000 to 300,000
lines of code. As a result, their uses of logical relations are difficult to isolate from the
surrounding contexts and inaccessible to casual readers.

Thus, our paper provides a gentle and accessible introduction to a powerful technique for
dependent type theories. To promote the use of machine-assisted reasoning, our develop-
ment is accompanied by a short mechanized proof script, of less than 1000 lines of code,
developed using the Coq proof assistant Coq Development Team (2019).

We have streamlined our proof through a number of means: the careful selection of the
features that we include in the object type system and the results that we prove about it, in
addition to the judicious use of automation. Our language is small, but includes enough to
be illustrative. For example, we eschew inductive datatypes or W-types, but we do include
propositional equality and booleans to capture the challenges presented by indexed types
and dependent pattern matching. We do not show the decidability of type checking, nor
do we develop a PER semantics, but we prove logical consistency, which states that empty
types are not inhabited in an empty context, and demonstrate how our consistency proof
can be extended (at a moderate cost of 500 lines of code) to show the existence of V[-
normal forms for well-typed open and closed terms. We include a full predicative universe
hierarchy and type-level computation to demonstrate the logical strength of the approach.

More concretely, our paper makes the following contributions.

• In Section 2, we introduce _Π , the dependent type theory of interest. A key design
choice that impacts our proofs is the use of an untyped conversion rule, inspired
by Pure Type Systems (Barendregt, 1991), and specified through parallel reduc-
tion (Takahashi, 1995; Barendregt, 1993).

• In Section 3, we formulate logical consistency for_Π , the property of interest, tomoti-
vate a logical relation.We define the relation first inductively and then later prove that
it is a partial function. Based on this definition, we define semantic typing and prove
the fundamental theorem, from which consistency follows as a corollary (Section 4).
Thanks to the design of _Π , our proof showcases the special treatment required to
model many of the most common features of dependent type theories, thus making
our proof applicable to a broad range of type systems.
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Logical Relations for Type Theory 3

• We strengthen our logical relation to prove the existence of V-normal forms
(Section 5) and V[-normal forms (Section 6) for well-typed open terms. The modifi-
cations made to our initial logical relation are small and closely mirror the necessary
extensions for a simply-typed language. We use this part to show that once we
have established the base techniques, we can port ideas from proofs about simpler
languages to the dependently typed setting.

• We mechanize all our proofs using the Coq proof assistant, with 957 lines of code for
the consistency proof and a moderate increase to 1568 lines of code for the normal-
ization proof. We discuss the specifics related to our choice of Coq as our metatheory,
including our use of off-the-shelf semantic engineering infrastructure and automation
tools, in Section 7. Our proof scripts, with comments, are available to reviewers as
supplementary materials.

• We compare our work to existing proofs by logical relations and other proof tech-
niques for proving consistency and normalization. We provide an overview of this
prior work (Section 8) and also give an in-depth explanation on how various design
decisions affect the size of our proof and its extensibility to additional features
(Section 9).

The result of our work is an artifact that an interested researcher can navigate and under-
stand. We accompany this short mechanized proof with an informal description, presented
here using set-theoretic notation and terminology so that it is accessible to readers with
a general mathematical background. That said, our explanations do not stray too far away
from our proof scripts. We link each lemma directly to its counterpart in the proof script,
anticipating that readers may wish to see how these results may be expressed and verified
in a proof assistant. The typeset proofs purposefully follow the mechanized proofs closely
while avoiding, as much as possible, artifacts specific to Coq.

Not only does this close connection aid readers that wish to, like us, adopt proof assis-
tants for their day-to-day use, but we also find that this precision is important for conveying
the proof technique itself. Unlike properties that are derivable through syntactic means,
proofs by logical relations make demands on the strength of the metalogic in which they
are expressed. An informal proof that attempts to be agnostic or ambiguous about the under-
lying metatheory requires substantial effort from the reader to understand whether it is
definable in a given ambient logic.



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

4 Y. Liu et al.

2 Specification of a Dependent Type Theory

Terms
a, b, c, p, A, B ::= Seti | x | Void universes, variables, empty type

| Πx:A.B | _x.a | a b function types, abstractions, applications
| a ∼ b ∈ A | refl | J c a b p equality types, reflexivity proof, J eliminator
| Bool | true | false boolean type, true, false
| if a then b0 else b1 conditional expression

Substitutions Typing Contexts
d ∈ Var→ Term Γ ::= · | Γ, x : A

Fig. 1. Syntax of _Π

In this section, we present the dependent type theory, _Π , whose logical consistency will
be proven in Section 4.

The syntax of _Π can be found in Figure 1. As a dependent type theory, terms and types
are collapsed into the same syntactic category. The type Seti represent a universe type,
annotated by its universe level, a natural number 8. Abstractions_x.a and dependent function
types Πx:A.B are binding forms for the variable G in the body of the function and codomain
of the function type. 1 We use the notation A→ B when the output type B is not dependent
on the input variable. For simplicity, we omit the type annotations in the abstraction forms.
We discuss how the inclusion of type annotations can affect our development in Section 6,
where we extend our consistency result to the existence of V[-normal forms. We include in
_Π the intensional identity type a ∼ b ∈ Awhose proofs can be eliminated by the J-eliminator
J c a b p, where p is an equality proof between a and b, and c is the term whose type is to
be casted. Finally, _Π includes booleans, with standard syntax.

Our reduction and typing relations are defined in terms of simultaneous substitutions,
d, which are mappings from variables to terms. We use id as the identity substitution. The
extension operation, (d[x ↦→ a]), updates the substitution d to map the variable x to a rather
than d(x).

The substitution operator, which takes the form a{d}, traverses the syntax of a and
replaces each variable x with the term d(x). When traversing under binders (e.g. in the
(_x.a){d} case), it must be the case that d maps the bound variable to itself and that the
bound variable does not appear freely in the application of the substitution to any other
variable.

1 In the exposition in this paper, binding forms are equal up to U-conversion and we adopt the Barendregt Variable
Convention Barendregt (1985), which lets us assume that bound variables are distinct. In some places, we are
informal about the treatment of variables and substitution; our mechanized proofs make these notions precise by
using de Bruijn indices de Bruijn (1994).
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Logical Relations for Type Theory 5

The substitution operator is referred to as simultaneous substitution as it substitutes for
all variables at once. It is possible to recover single substitution by composing the extension
operator and the identity substitution: a{b/x} := a{id[x ↦→ b]}.

When reasoning about logical relations, we find it more convenient to formulate simulta-
neous substitution directly rather than recovering it from single substitution. In particular,
this shows up in the definition of semantic typing in Section 4, which relies on simultaneous
substitution.

2.1 Definitional equality via parallel reduction

a⇒ b (Parallel Reduction)
P-AppAbs
a0 ⇒ a1 b0 ⇒ b1

(_x.a0) b0 ⇒ a1{b1/x}

P-IfTrue
b0 ⇒ b1

if true then b0 else c0 ⇒ b1

P-IfFalse
c0 ⇒ c1

if false then b0 else c0 ⇒ c1

P-JRefl
c0 ⇒ c1

J c0 a0 b0 refl⇒ c1

Fig. 2. Parallel reduction (V-rules only)

Before we specify the typing rules, we first specify the equational theory used in the
conversion rule (rule T-Conv in Figure 3). The equivalence relation used in this rule is
often referred to definitional equality in dependent type theories because it defines the
equivalence that the syntactic type system works up to.

In _Π , we use a relation called convertibility for definitional equality. Two terms are
convertible, if they reduce to a common form. The reduction that we use is called parallel
reduction, written a⇒ b. The notation a⇒∗ b indicates the transitive closure of parallel
reduction.

Definition 2.1 (Convertibility). Two terms a0 and a1 are convertible, written a0 ⇔ a1, if
there exists some term b such that a0 ⇒∗ b and a1 ⇒∗ b.

The definition of the parallel reduction relation, appears in Figure 2. (For brevity, the
reflexivity and congruence rules of this relation are omitted from this figure).

We prove, through standard techniques Takahashi (1995); Wadler et al. (2022), the
following properties of parallel reduction.

Lemma 2.2 (Par Refl2). For all terms a, a⇒ a.

Lemma 2.3 (Par cong3). If a0 ⇒ a1 and b0 ⇒ b1, then a0{b0/x} ⇒ a1{b1/x}.
2 join.v:Par_refl 3 join.v:par_cong

join.v
join.v
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Corollary 2.4 (Par subst4). If a0 ⇒ a1, then a0{b/x} ⇒ a1{b/x} for arbitrary b.

Lemma 2.5 (Par diamond5). If a⇒ b0 and a⇒ b1, then there exists some term c such that
b0 ⇒ c and b1 ⇒ c.

Convertibility is an equivalence relation. The key step in proving transitivity is showing
the diamond property for parallel reduction.

Lemma 2.6 (Convertibility refl6). For all terms a, a⇔ a.

Lemma 2.7 (Convertibility sym7). If a⇔ b, then b⇔ a.

Lemma 2.8 (Convertibility trans8). If a0 ⇔ a1 and a1 ⇔ a2, then a0 ⇔ a2.

The convertibility relation that we use for conversion in _Π is unusual in that it
is directly defined via parallel reduction, instead of using the related notion of V-
equivalence (Barendregt, 1991; Coquand and Paulin, 1990). This choice does not change the
language definition; a detailed argument of the equivalence between a⇔ b and untyped V-
equivalence can be found in Barendregt (1993) and Takahashi (1995). However, this choice
simplifies later proofs, as we discuss in Section 9.

Our definition of equality is untyped: the judgement does not require the two terms to
type check and have the same type. The use of an untyped relation for conversion is similar
to Barendregt’s Pure Type Systems Barendregt (1991) and differs from MLTT (Martin-
Löf, 1975), where the judgmental equality takes the form Γ ` 0 ≡ 1 : �. By working with
an untyped judgement, we can establish its properties independently from the type system
and the logical relation, using well-established syntactic approaches. Siles and Herbelin
(2012) show the equivalence of Barendregt’s Pure Type System, which employs untyped
equality, and its variant that uses typed judgmental equality. This assures us that we do not
lose generality working with a systemwith untyped conversion. We compare this definition
with type-directed approaches to equality in Section 9.

4 join.v:par_subst 5 join.v:par_confluent 6 join.v:Coherent_reflexive
7 join.v:Coherent_symmetric 8 join.v:Coherent_transitive

join.v
join.v
join.v
join.v
join.v
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Logical Relations for Type Theory 7

2.2 Syntactic Typing

` Γ (Context Well-Formedness)

Ctx-Empty

` ·

Ctx-Cons
` Γ Γ ` A : Seti x ∉ dom(Γ)

` Γ, x : A

Γ ` a : A (Typing)

T-Var
` Γ x : A ∈ Γ

Γ ` x : A

T-Set
` Γ

Γ ` Seti : Set(1+i)

T-Pi
Γ ` A : Seti

Γ, x : A ` B : Seti

Γ `Πx:A.B : Seti

T-Abs
Γ `Πx:A.B : Seti
Γ, x : A ` b : B

Γ ` _x.b : Πx:A.B

T-App
Γ ` b : Πx:A.B

Γ ` a : A

Γ ` b a : B{a/x}

T-Conv
Γ ` a : A

Γ ` B : Seti A⇔ B

Γ ` a : B

T-Void
` Γ

Γ `Void : Seti

T-Bool
` Γ

Γ `Bool : Seti

T-True
` Γ

Γ ` true : Bool

T-False
` Γ

Γ ` false : Bool

T-If
Γ, x : Bool ` A : Seti

Γ ` a : Bool Γ ` b0 : A{true/x} Γ ` b1 : A{false/x}
Γ ` if a then b0 else b1 : A{a/x}

T-Eq
Γ ` A : Setj Γ ` a : A Γ ` b : A

Γ ` a ∼ b ∈ A : Seti

T-Refl
` Γ Γ ` a : A

Γ ` refl : a ∼ a ∈ A

T-J
Γ ` a : A Γ ` b : A Γ ` A : Setj Γ ` p : a ∼ b ∈ A

Γ, x : A, y : x ∼ a ∈ A ` B : Seti Γ ` c : B{a, refl/x, y}
Γ ` J c a b p : B{b, p/x, y}

Fig. 3. Syntactic typing for _Π
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8 Y. Liu et al.

Figure 3 gives the full typing rules for _Π . The premises wrapped in gray boxes can be
shown to be admissible syntactically, though some of them are required to strengthen the
inductive hypothesis of the fundamental theorem.

The typing rules of _Π are standard for dependent type theories. The variable rule, rule T-
Var, uses the auxiliary relation x : A ∈ Γ, that holds when a variable declaration is found in
the typing context. The typing of universes ensures that each one belongs to the next higher
level. Rule T-Pi ensures predicative quantification by requiring that all parts of the type be
typeable at the same universe level. Rule T-Abs ensures that all functions have well-formed
dependent types. In an application (rule T-App) the argument is substituted for the variable
in the result type.

Rule T-Conv uses the convertibility relation from earlier as our equality judgment for
type conversion.

The elimination form for booleans, rule T-If, demonstrates dependent pattern matching.
The result type of this expression, A{a/x}, is composed of some motive A, a type where its
single free variable has been replaced with the condition of the if expression. When typing
the true branch, this substitution replaces the variable by true, and similarly for the false
branch. As a result, the type system communicates the information gained from the test to
each of the branches of the expression.

A similar sort of dependent pattern matching occurs when eliminating identity types.
Such types are checked for well-formedness with rule T-Eq and introduced by rule T-Refl.
In rule T-J, the elimination form, the subterm ? is a proof of an equality between a and b.
The subterm c is the body of the elimination form. In this rule, B is the motive and has two
free variables. When checking c, the substitution for these variables changes from b to a
and from p to refl, witnessing the information gained through dependent pattern matching.

The universe hierarchy and the boolean base type gives _Π the ability to compute a type
using a term as input, a feature commonly referred to as large elimination. For example, we
can type check the function _x.if x then Bool else Void, which returns either Bool or Void
depending on whether its input is true or false.

3 Logical Relation

Before we define our logical relation, we first formally specify the consistency property that
we want to prove.

Theorem 3.1 (Logical Consistency). The judgment · ` a : Void is not derivable.

The property can be formulated in a simply typed language, where Void is similarly
defined as a type that has no term. A related property, referred to as the termination prop-
erty (for closed terms), is commonly used in introductory materials such as Skorstengaard
(2019), Pierce (2002), and Harper (20220) to motivate the need for a logical relation.

A naive attempt to proving Theorem 3.1 by induction on the derivation · ` a : Void would
succeed at almost all cases except for rule T-App. In the application case, we are given
· ` b : Πx:A.B and · ` a : A, and the equality that B{a/x} =Void. Our goal is to show that
· ` b a : Void is not possible. However, note that there is nothing we know of b or a from
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the induction hypothesis because neither Πx:A.B nor A is equal to Void. We have no way of
deriving a contradiction from · ` b a : Void. The takeaway from this failed attempt is that,
in order to derive the consistency, we need to know something about types other than Void.
From a pragmatic point of view, proof by logical relation can be seen as a sophisticated way
of strengthening the induction hypothesis. From the strengthened property, the fundamental
theorem, we will be able to derive consistency as a corollary.

The complexity of applying proof by logical relation to dependent types stems from the
fact that the logical relation is much harder to define. In simply typed languages, the logical
relation is defined as a recursive function over the type A. In dependent types, the type A
can take the form (_x.x) Bool. To assign meaning to this type, we need to first reduce it to
Bool. However, we cannot write a function that performs the reduction because we do not
know the termination of well-typed terms a priori. As a result, we define the logical relation
as an inductively defined relation, reminiscent of how we specify the reduction graph of a
partial function; the functionality of the relation can later be recovered in Lemma 3.7.

3.1 Definition of the Logical Relation

JAKi
I ↘ S (Logical Relation)

I-Set
j < i

JSetjKi
I ↘ I (j)

I-Void

JVoidKi
I ↘∅

I-Bool

JBoolKi
I ↘ {a | a⇒∗ true∨ a⇒∗ false}

I-Eq

Ja ∼ b ∈ AKi
I ↘ {p | p⇒∗ refl∧ a⇔ b}

I-Red
A⇒ B JBKi

I ↘ S

JAKi
I ↘ S

I-Pi
JAKi

I ↘ S F ∈ S →P(Term) ∀a, if a ∈ S, then JB{a/x}Ki
I ↘ F(a)

JΠx:A.BKi
I ↘ {b | ∀a, if a ∈ S, then b a ∈ F(a)}

Fig. 4. Logical relation for _Π

The logical relation for _Π , which takes the form JAKi
I ↘ S, is defined as an inductively

generated relation (Figure 4). Metavariables A and i stand for terms and natural numbers
respectively, as introduced earlier in Figure 1. The metavariables I and S are sets with the
following signatures.

I ∈ {j | j < i} → P(Term) S ∈ P(Term)
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The notationP(Term) denotes the powerset of the set of _Π terms. The function I is a family
of sets of terms indexed by natural numbers strictly less than the parameter i, which repre-
sents the current universe level. In rule I-Set, the function I is used to define the meaning of
universes that are strictly smaller than the current level i. The restriction j < i in rule I-Set
ensures the predicativity of the system.

We tie the knot and obtain an interpretation for all universe levels below. The judgment
JAKi ↘ S reads that the type A is a level-i type semantically inhabited by terms from the set
S.

Definition 3.2 (Logical relation for all universe levels). Define JAKi ↘ S recursively
through the well-foundedness of the < relation on natural numbers.

JAKi ↘ S := JAKi
I ↘ S,where I (j) := {A | ∃S, JAKj ↘ S} for j < i

Definition 3.2 explains how the j < i constraint in rule I-Set makes our system predica-
tive; the interpretation of the iCℎ universe is only dependent on universes strictly lower than
i, which have already been defined. This restriction ensures that that the relation is well-
defined: without it the definition of JAKi ↘ S would not be well-founded; JAKi

I ↘ S would
call I on universe levels greater than or equal to i, which are yet to be defined.

By unfolding Definition 3.2, we can show that the same introduction rules for JAKi
I ↘ S

are admissible for JAKi ↘ S. For example, we can prove the following derived rules:

IR-Void

JVoidKi ↘∅

IR-Set
j < i

JSetjKi ↘ {A | ∃S, JAKj ↘ S}

In most informal presentations, instead of defining the logical relation in two steps as we
have shown above, the rules for JAKi ↘ S are given directly, with the implicit understanding
that the relation is an inductive definition nested inside a recursive function over the universe
level i. We choose the more explicit definition not only because it is directly definable in
proof assistants that lack induction-recursion, but also because it makes clear the induction
principle we are allowed to use when reasoning about JAKi ↘ S.

We next take a closer look at the inductive relation JAKi
I ↘ S, defined in Figure 4. Rules I-

Void and I-Bool capture terms that behave like the inhabitants of the Void and Bool types
under an empty context. For example, the Void type should not have any inhabitants under
the empty context, where as the Bool type only contains terms that reduce to true or false.
Note that the characterization of Bool (and other inhabited types) in our logical relation
does not always correspond to well-typed or even closed terms. For example, the term
if false then Void true else true is ill-typed under the empty context but still belongs to
the set {a | a⇒∗ true∨ a⇒∗ false} since it evaluates to true. The independence of syn-
tactic typing in our logical relation allows our semantic typing definition in Section 4 to
be meaningful on its own. Furthermore, not having to embed scoping information into the
logical relation avoids extra bookkeeping and the need for a Kripke-style logical relation
when we extend our logical relation to prove the existence of V-normal forms (Section 5).

Rule I-Eq says that an equality type a ∼ b ∈ A corresponds to the set of terms that reduce to
reflwhen a⇔ b also holds and otherwise corresponds to the empty set. Conditions like a⇔
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b are typically required for indexed types, of which equality types are an instance. Rule I-
Red enables us to reduce types in order to assign meanings. Recall the type expression
(_x.x) Bool. Rule I-Red says that to know that J(_x.x) BoolKi

I ↘ S for some S, it suffices
to show that JBoolKi

I ↘ S since (_x.x) Bool⇒Bool. The derivation that J(_x.x) BoolKi
I ↘

{a | a⇒∗ true∨ a⇒∗ false} therefore follows by composing rule I-Red and rule I-Bool.
Rule I-Pi is the most complex rule in our logical relation. Instead of explaining it directly,

we first consider the following simplified version, rule I-PiAlt, that follows directly from
rule I-Pi.

I-PiAlt
JAKi

I ↘ S
∀a, if a ∈ S, then ∃S0, JB{a/x}Ki

I ↘ S0

JΠx:A.BKi
I ↘ {b | ∀a, if a ∈ S, then ∀S0, if JB{a/x}Ki

I ↘ S0, then b a ∈ S0}

Rule I-PiAlt directly captures the meaning of a well-behaved dependent function type.
The precondition of the rule says that the function type Πx:A.B has an interpretation if its
input type A can be interpreted as some set S, and for all terms a ∈ S, the type B{a/x},
obtained by substituting a into the output type B, has some semantic interpretation S0. In its
conclusion, the interpretation of Πx:A.B is the set of terms b, such that for all a ∈ S, where
S is an interpretation of A, the application form b a belongs to all possible interpretations of
B{a/x} (the pre-condition ensures at least one interpretation exists for each B{a/x} where
a ∈ S).

Lemma 3.3 (I-PiAlt derivability). Rule I-PiAlt is derivable from rule I-Pi.

Proof The precondition ∀a, if a ∈ S, then ∃S0, JB{a/x}Ki
I ↘ S0 from rule I-PiAlt imme-

diately induces a function F ∈ S →P(Term) such that ∀a, if a ∈ S, then JB{a/x}Ki
I ↘

F(a), which is exactly what we need to apply rule I-Pi. �

In fact, while rule I-PiAlt is an instantiation of rule I-Pi, these two rules are equiva-
lent in the sense that every derivation involving rule I-Pi can be systematically replaced by
rule I-PiAlt. This equivalence follows directly from the fact that the logical relation is a
partial function, a result we will show in Lemma 3.7. The preconditions of rule I-Pi, when
combined with the functionality of the logical relation, uniquely determine the function
F ∈ S →P(Term) to be the functional relation {(a, S0) | if a ∈ S, then JB{a/x}Ki

I ↘ S0}.
This result is formally shown through the improved inversion lemma for function types
(Lemma 3.8).

Unfortunately, we cannot define the function case of our logical relation directly using
rule I-PiAlt since the occurrence of JB{a/x}Ki

I ↘ S0 in its conclusion not only violates
the syntactic strict positivity constraint required in proof assistants, but is genuinely non-
monotone when we treat the inductive definition as the fixed point of an endofunction over
the domain of relations. Intuitively, the failure of monotonicity stems from the fact that the
witness picked in the precondition is not necessarily the same witness being referred to in
the post condition as the relation grows, whereas the function F in rule I-Pi ‘‘fixes’’ the
witnesses S0 as F(a) for each a ∈ S, thus preventing the set of witnesses from growing.
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While it might be possible to restrict the domain with additional constraints such as func-
tionality and inversion properties to justify the well-definedness of our inductive relation
with rule I-PiAlt, we opt for our current rule I-Pi that immediately produces a well-defined
inductive relation and usable induction principle. The slight disadvantage of rule I-Pi is that
we need to construct the function F each time we apply it, though this is mitigated by the
derivability of rule I-PiAlt and the alternative Π inversion principle (Lemma 3.8).

3.2 Properties about the Logical Relation

In the rest of this section, we develop the theory of our logical relation with the goal of
showing four key facts: irrelevance (Lemma 3.6), functionality (Lemma 3.7), cumulativity
(Lemma 3.9), and the backward closure property (Lemma 3.12). For the majority of the
properties that we prove in this section, we do not need any information about the parame-
terized function I. Each property about JAKi ↘ S follows as a corollary of a property about
JAKi

I ↘ S with no or few assumptions imposed on I. As a result, we usually state our lemmas
in terms of JAKi

I ↘ S without duplicating them in terms of JAKi ↘ S.
First, we prove a family of simple properties, which we refer to as inversion principles

for our logical relation. Given JAKi
I ↘ S where A is in some head form such as Bool or

Πx:A0.B0, the inversion lemma allows us to say something about the set S. Its proof is
simple, but we sketch out the case for functions to help readers confirm their understanding
of rule I-Pi.

Lemma 3.4 (Inversion of the logical relation).

1. 9 If JVoidKi
I ↘ S, then S = ∅.

2. 10 If JBoolKi
I ↘ S, then S = {a | a⇒∗ true∨ a⇒∗ false}.

3. 11 If Ja ∼ b ∈ AKi
I ↘ S, then S = {p | p⇒∗ refl∧ a⇔ b}.

4. 12 If JΠx:A.BKi
I ↘ S1, then there exists S, F such that:

– JAKi
I ↘ S

– F ∈ S →P(Term)
– ∀a, if a ∈ S, then JB{a/x}Ki

I ↘ F(a)
– S1 = {b | ∀a, if a ∈ S, then b a ∈ F(a)}

5. 13 If JSetjKi
I ↘ S, then j < i and S = I (j).

Proof As mentioned earlier, we only show the inversion property for the function type. We
start by inducting over the derivation of JΠx:A.BKi

I ↘ S. There are only two possible cases
we need to consider.

Rule I-Pi: Immediate.
Rule I-Red: We are given that JΠx:A.BKi

I ↘ S1. We know that there exists some A0
and B0 such that Πx:A.B⇒Πx:A0.B0 and JΠx:A0.B0Ki

I ↘ S1. From the induction
hypothesis, there exists S and F such that :

9 semtyping.v:InterpExt_Void_inv 10 semtyping.v:InterpExt_Bool_inv
11 semtyping.v:InterpExt_Eq_inv 12 semtyping.v:InterpExt_Fun_inv
13 semtyping.v:InterpExt_Univ_inv
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• JA0Ki
I ↘ S

• F ∈ S →P(Term)
• ∀a, if a ∈ S, then JB0{a/x}Ki

I ↘ F(a)
• S1 = {b | ∀a, if a ∈ S, then b a ∈ F(a)}

By inverting the derivation of Πx:A.B⇒Πx:A0.B0, we derive A⇒ A0 and B⇒ B0. By
Lemma 2.4, we have B{a/x} ⇒ B0{a/x} for all a. As a result, by rule I-Red, the same S
and F additionally satisfy the following properties.

• JAKi
I ↘ S

• ∀a, if a ∈ S, then JB{a/x}Ki
I ↘ F(a)

These properties are exactly what we need to finish the proof.

�

Rule I-Red bakes into the logical relation the backward preservation property. That is,
given JAKi

I ↘ S, if B⇒∗ A, then JBKi
I ↘ S also holds. The following property shows that

preservation holds in the usual forward direction too.

Lemma 3.5 (Forward preservation14). If JAKi
I ↘ S and A⇒ B, then JBKi

I ↘ S.

Proof We carry out the proof by induction over the derivation of JAKi
I ↘ S.

The only interesting case is rule I-Red. Given that A⇒ B0 and JB0Ki
I ↘ S, we need to

show for all B1 such that A⇒ B1, we have JB1Ki
I ↘ S. By the diamond property of parallel

reduction (Lemma 2.5), there exists some term B such that B0 ⇒ B and B1 ⇒ B. By the
induction hypothesis, we deduce JBKi

I ↘ S from B0 ⇒ B and JB0Ki
I ↘ S. By rule I-Red and

B1 ⇒ B, we conclude that JBKi
I ↘ S.

The remaining cases all fall from induction hypotheses and basic properties about
convertibility and parallel reduction we have established in Section 2. �

From Lemma 3.5 and rule I-Red, we can easily derive the following corollary that two
convertible types can always interpret into the same set. We adopt the terminology from
Adjedj et al. (2024) and refer to this property as irrelevance.

Corollary 3.6 (Irrelevance of logical relation15). If JAKi
I ↘ S and A⇔ B, then JBKi

I ↘ S.

Because the definition of our logical relation is an inductive relation, it is not immediately
obvious why each type A can only uniquely correspond to one set S. The following lemma
shows that our logical relation is indeed functional.

Lemma 3.7 (Logical relation is functional16). If JAKi
I ↘ S0 and JAKi

I ↘ S1, then S0 = S1.

Proof The proof proceeds by induction over the derivation of the first premise JAKi
I ↘

S0. All cases that are not rule I-Red follow immediately from Lemma 3.4, the inversion
properties.
14 semtyping.v:InterpExt_preservation 15 semtyping.v:InterpUnivN_Coherent
16 semtyping.v:InterpExt_deterministic
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For rule I-Red, we are given that there exists some B such that A⇒ B and JBKi
I ↘ S0.

Our goal is to show that given JAKi
I ↘ S1 for some S1, we have S0 = S1. By the preservation

property (Lemma 3.5), we know that JBKi
I ↘ S1 since A⇒ B. The statement S0 = S1 then

immediately follows from the induction hypothesis. �

Lemma 3.7 enables us to show the following improved inversion lemma for function
types whose statement is free of the relation F, analogous to the derivable rule I-PiAlt.

Lemma 3.8 (Pi Inversion Alt17). Suppose JΠx:A.BKi
I ↘ S, then there exists some S0 such

that the following constraints hold:

• JAKi
I ↘ S0

• ∀a, if a ∈ S0, then ∃S1, JB{a/x}Ki
I ↘ S1

• S = {b | ∀a, if a ∈ S0, then ∀S1, if JB{a/x}Ki
I ↘ S1, then b a ∈ S1}

Proof Immediate from Lemmas 3.4 and 3.7. �

The next lemma shows that our logical relation satisfies cumulativity. That is, if a type
has an interpretation at a lower universe level, then we can obtain the same interpretation
at a higher universe level.

Lemma 3.9 (Logical relation cumulativity18). If JAKi0
I ↘ S and i0 < i1, then JAKi1

I ↘ S.

Proof Trivial by structural induction over the derivation of JAKi0
I ↘ S. �

Note that in the statement of Lemma 3.9, we implicitly assume that I is defined on the
set of natural numbers less than i1.

Corollary 3.10 (Logical relation is functional with different levels19). If JAKi0
I ↘ S0 and

JAKi1
I ↘ S1, then S0 = S1.

Proof Immediate from Lemmas 3.7 and 3.9. �

Definition 3.11 (Sets closed under expansion). We say that a set of terms S is closed under
expansion if given a ∈ S, then b ∈ S for all b⇒ a.

The final property we want to show is that the output set S from the logical relation is
closed under expansion. Unlike the previous lemmas, we directly state the lemma in terms of
JAKi ↘ S rather than JAKi

I ↘ S because we need to know something about I for this property
to hold in the rule I-Set case.

Lemma 3.12 (Interpreted sets are closed under expansion20). If JAKi ↘ S, then the set S is
closed under expansion.

Proof By the definition of JAKi ↘ S, we unfold JAKi ↘ S by one step into JAKi
I ↘ S where

I (j) := {A | ∃S, JAKj ↘ S}. We then proceed by induction over the derivation of JAKi
I ↘ S.

17 semtyping.v:InterpExt_Fun_inv_nopf 18 semtyping.v:InterpExt_cumulative
19 semtyping.v:InterpExt_deterministic' 20 semtyping.v:InterpUnivN_back_clos
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All cases are trivial except for the rule I-Set case, where we want to show that the set
I (j) is closed under expansion for all j < i. However, by the definition of I, we know that
A ∈ I (j) if and only if there exists some S such that JAKj

I ↘ S. By rule I-Red, we must also
have B ∈ I (j) for all B⇒ A. �

4 Semantic Typing and Consistency

In this section, we show that all closed, well-typed terms are contained within their type-
indexed sets. In other words, · ` a : A implies JAKi ↘ S and a ∈ S. This result gives us
consistency because we know that JVoidKi ↘ S is defined, and that S must be the empty
set. Therefore, if there were some closed, well-typed term of type Void, it would need to be
a member of the empty set, a contradiction.

To prove this result, we define a notion of semantic typing based on the logical relation
we have defined in Section 3 and prove the fundamental lemma, which states that syntactic
typing implies semantic typing. Semantic typing extends our logical relation from being a
(type-indexed) family of predicates on closed terms, to a type-indexed family of predicates
on open terms.

The necessity of semantic typing as an extra layer of definition on top of the logic rela-
tion can be understood in simply typed languages (Skorstengaard, 2019; Harper, 20220;
Pierce, 2002). In our setting, attempting to show that · ` a : A implies JAKi ↘ S and a ∈ S
through induction over the derivation of · ` a : A will fail in rule T-Abs, where the induction
hypothesis is not helpful since the body of the lambda term is typed under a non-empty
context. Through the definition of semantic typing, we can state a strengthened property
that is actually provable.

Definition 4.1 (Semantic well-formed substitution21). Define d � Γ when

∀x, A, i, and S, if x : A ∈ Γ and JA{d}Ki ↘ S, then d(x) ∈ S

The d � Γ notation denotes the semantic well-formedness of a substitution d with respect
to a context Γ. For every variable x with its associated type A in the context, d(x) is a term
that inhabits all possible interpretations of the type A{d}. The ∀ quantifier in its definition
might look excessive since we know from Lemma 3.7 that each type can have at most one
interpretation. However, since d � Γ mostly appears in the position of a hypothesis, the ∀
statement is easy to instantiate and makes our proofs slightly easier. The few cases where
we need to prove d � Γ are handled by the following two structural properties, the second
of which depends on Lemma 3.7.

Lemma 4.2 (Well-formed d empty22). d � Γ whenever Γ is the empty context.

Lemma 4.3 (Well-formed d cons23). If JAKi ↘ S, a ∈ S, and d � Γ, then d[x ↦→ a] � Γ, x :
A.

We next define semantic well-typedness.

21 soundness.v:d_ok 22 soundness.v:d_ok_nil 23 soundness.v:d_ok_cons
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Definition 4.4 (Semantic typing24). Define Γ � a : A when

∀d, if d � Γ then there exists some j and S such that JA{d}Kj ↘ S and a{d} ∈ S

This definition says the term a can be semantically typed A under the context Γ if for all
substitutions d such that d � Γ, the type A{d} can be interpreted as the set S, and a{d} ∈ S.
Our definition of semantic well-typedness is standard, though dependent types add a small
twist that we apply the d to A and require that A{d} has some interpretation.

Finally, we define semantic well-formedness for contexts, analogous to the relation ` Γ.

Definition 4.5 (Semantic context well-formedness25). Define � Γ as follows.

∀x : A ∈ Γ, there exists some 8 such that Γ � A : Seti

Recall that ` Γ is defined inductively in terms of the syntactic typing judgment. We take
a different approach here with its semantic counterpart � Γ. The definition of � Γ is not
telescopic: with ` Γ, a variable appearing earlier in the context is well-scoped under a trun-
cated context, whereas with � Γ, the types are only required to be semantically well-formed
with respect to the full context, regardless of their position in Γ. Our definition of � Γ could
be strengthened, though the simpler definition is sufficient for showing the fundamental
lemma.

We can recover the structural rules for � Γ as lemmas.

Lemma 4.6 (Semantic context well-formedness empty26). � Γ holds when Γ is empty.

Lemma 4.7 (Semantic context well-formedness cons27). If � Γ and Γ � A : Seti, then �
Γ, x : A.

The following lemma makes the statement Γ � A : Seti easier to work with.

Lemma 4.8 (Set Inversion28). The following two statements are equivalent:

• Γ � A : Seti
• ∀ d, if d � Γ, then there exists S such that J(A{d})Ki ↘ S

Proof The forward direction is immediate by Lemma 3.4. We now consider the backward
direction and show that Γ � A : Seti given the second bullet.

Suppose d � Γ, then we know that there exists some S such that J(A{d})Ki ↘ S. By the
definition of semantic typing, it suffices to show that there exists some j and S0 such that
JSetiKj ↘ S0 and A{d} ∈ S0. Pick 1 + i for j and {A | ∃S, JAKi ↘ S} for S0 and it is trivial
to verify the conditions hold. �

Next, we show some non-trivial cases of the fundamental theorem as top-level lemmas.
For example, we can define the semantic analogue to the syntactic typing rule for variables
(rule T-Var).

24 soundness.v:SemWt 25 soundness.v:SemWff 26 soundness.v:SemWff_nil
27 soundness.v:SemWff_cons 28 soundness.v:SemWt_Univ
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Lemma 4.9 (ST-Var). If � Γ and x : A ∈ Γ, then Γ � x : A.

Proof Suppose d � Γ. By the definition of semantic typing, we need to show that there
exists some i and S such that

• JA{d}Ki ↘ S
• d(x) ∈ S

By the definition of semantic context well-formedness, we deduce from � Γ and x : A ∈
Γ that there exists some universe level i such that Γ � A : Seti. By the equivalence from
Lemma 4.8, there exists S such that JA{d}Ki ↘ S. However, by the definition of d � Γ, we
know that d(x) ∈ S, which is exactly what we need for the conclusion. �

Lemma 4.10 (ST-Set). If i < j, then Γ � Seti : Setj.

Proof Immediate by Lemma 4.8 and rule IR-Set. �

Lemma 4.11 (ST-Pi). If Γ � A : Seti and Γ, x : A � B : Seti, then Γ �Πx:A.B : Seti.

Proof Applying Lemma 4.8 to the conclusion, it now suffices to show that given d � Γ,
there exists some S such that J(Πx:A.B){d}Ki ↘ S. From Lemma 4.8 and Γ � A : Seti, we
know that there exists some set S0 such that JA{d}Ki ↘ S0. From Γ, x : A � B : Seti, we know
that there must exist S such that JB{d[x ↦→ a]}Ki ↘ S for every a ∈ S0. The conclusion
immediately follows from the admissible rule I-PiAlt. �

Lemma 4.12 (ST-Abs). If Γ �Πx:A.B : Seti and Γ, x : A � b : B, then Γ � _x.b : Πx:A.B.

Proof By unfolding the definition of Γ � _x.b : Πx:A.B, we need to show that given some
d � Γ, there exists some i and S such that J(Πx:A.B){d}Ki ↘ S and (_x.b){d} ∈ S.

By Lemma 4.8 and the premise Γ �Πx:A.B : Seti, there exists some set S such that J(Πx:
A.B){d}Ki ↘ S. It now suffices to show that (_x.b){d} ∈ S. By Lemma 3.8, the alternative
inversion principle for rule I-Pi, there exists some S0 such that all following conditions hold:

• JA{d}Ki ↘ S0
• ∀a, if a ∈ S0, then ∃S1, JB{d[x ↦→ a]}Ki ↘ S1
• S = {b | ∀a, if a ∈ S0, then ∀S1, if JB{d[x ↦→ a]}Ki ↘ S1, then b a ∈ S1}

To show that (_x.b){d} ∈ S, we need to prove that given a ∈ S0, JB{d[x ↦→ a]}Ki
I ↘ S1,

we have (_x.b){d} a ∈ S1. By Lemma 3.12, the set S1 is closed under expansion. Since
(_x.b){d} a⇒ b{d[x ↦→ a]}, it suffices to show that b{d[x ↦→ a]} ∈ S1, which is immedi-
ate from Γ, x : A � b : B and the fact that the logical relation is deterministic and cumulative
(Lemma 3.10). �

Lemma 4.13 (ST-App). If Γ � b : Πx:A.B and Γ � a : A, then Γ � b a : B{a/x}.

Proof Suppose d � Γ. The goal is to show that there exists some i and S1 such
that b{d} a{d} ∈ S1 and JB{a/x}{d}Ki ↘ S1, or equivalently, JB{d[x ↦→ a{d}]}Ki ↘ S1



737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

18 Y. Liu et al.

since B{a/x}{d} = B{d[x ↦→ a{d}]}. By the premise Γ � b : Πx:A.B, Lemma 4.8, and
Lemma 3.8, there exists some i and S0 such that:

• JA{d}Ki ↘ S0
• ∀a0, if a0 ∈ S0, then ∃S1, JB{d[x ↦→ a0]}Ki ↘ S1
• ∀a0, if a0 ∈ S0, then ∀S1, if JB{d[x ↦→ a0]}Ki ↘ S1, then b{d} a0 ∈ S1

Instantiating the variable a0 from the last two bullets with the term a{d}, the conclusion
immediately follows. �

Theorem 4.14 (The Fundamental Theorem29).

• If Γ ` a : A, then Γ � a : A.
• If ` Γ, then � Γ.

Proof Proof by mutual induction over the derivation of Γ ` a : A and ` Γ. The cases related
to context well-formedness immediately follow from Lemmas 4.6 and 4.7. The semantic
typing rules (Lemmas 4.9, 4.10, 4.11, 4.12, 4.13) can be used to discharge their syntactic
counterparts (e.g. Lemma 4.12 for case rule T-Abs). The remaining cases not covered by
the lemmas are similar to the ones already shown. �

Recall the logical consistency property (Theorem 3.1), which states that the judgment
· ` a : Void is not derivable. We now give a proof of the property using the fundamental
lemma.

Proof Suppose · ` a : Void is derivable, then by the fundamental lemma, we have · � a :
Void, which states that for all d � ·, and for all j, S such that JVoidKj ↘ S, we have a{d} ∈ S.
By Lemma 4.2, any d we pick trivially satisfies d � Γ. For convenience, we pick d as id,
though any d would work since · ` a : Void ensures there is no free variable in a. We have
a{id} = a ∈ S. By the Void case of the inversion property (Lemma 3.4), we know that S
must be the empty set, contradicting the assumption that a ∈ S. �

Our soundness theorem also tells us something about closed terms of type Bool; they
either reduce to true or false.

Corollary 4.15 (Canonicity30). If · ` b : Bool, then either b⇒∗ true or b⇒∗ false.

Proof The proof is similar to above, except that we use the Bool case of the inversion
property. �

5 Existence of V-normal forms

In this section, we show how the logical relation from Section 3 can be extended to show
the existence of V normal forms for (open and closed) well-typed terms. In other words, we
prove that it is possible to repeatedly use the parallel reduction relation to reduce any term

29 soundness.v:soundness 30 soundness.v:canonicity
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to its unique normal form, where no further (non-identity) reductions can be applied. This
result can be used to show that our type conversion relation is decidable.

The goal of this section is also to demonstrate that our logical relations proof tech-
nique can be extended to reason about the reduction properties of open terms, not just the
reduction of terms after closing substitutions. Reasoning about open terms is particularly
important for dependently-typed languages because type checking involves working with
open terms. While this extension employs well-known techniques, it continues to be short
and demonstrates the robustness of our initial framework.

We begin this part with a description of the V-normal forms of _Π .

V-neutral terms e ::= x | e f | J e f f f | if e then f else f

V-normal terms f ::= e | Seti | Void | Πx:f .f | f ∼ f ∈ f
| _x.f | refl | Bool | true | false

Fig. 5. V-neutral and normal forms

The syntactic forms e and f (Figure 5) capture the neutral terms and normal forms with
respect to V-reduction. Instead of the metavariables 4 and 5 , we also use the judgment forms
ne a and nf a to indicate that there exists e or f such that a = e or a = f .

The predicates wne a and wn a describe terms that can evaluate into V-neutral or V-
normal form through parallel reduction and are defined as follows.

weakly normalizes to a neutral form wne a ⇐⇒ ∃e, a⇒∗ e
weakly normalizes to a normal form wn a ⇐⇒ ∃f , a⇒∗ f

JAKi
I ↘ S (Logical Relation)

I-Ne
ne A

JAKi
I ↘ {a | wne a}

I-VoidNew

JVoidKi
I ↘ {a | wne a}

I-BoolNew

JBoolKi
I ↘ {a | a⇒∗ true∨ a⇒∗ false∨wne a}

I-EqNew
nf a nf b nf A

Ja ∼ b ∈ AKi
I ↘ {p | (p⇒∗ refl∧ a⇔ b) ∨wne p}

Fig. 6. Extended logical relation (new and changed rules)
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The updated logical relation is shown in Figure 6. 31 There is one new rule in this figure,
rule I-Ne. In a non-empty context, a type itself may evaluate to a neutral term and in turn
can only be inhabited by neutral terms. Otherwise, the rest of the rules in this figure are
updates to the analogous rules in Figure 4. Note that, we omit the rules for the function and
universe cases because they are identical to the original version.

The changes to rule I-Bool and rule I-Void follow the same pattern: an open term of
type Bool does not necessarily reduce to true or false, but may reduce to a variable, or
more generally, a neutral term. Likewise, while the Void type remains uninhabited under
an empty context, it may be inhabited when there is a variable in the context that has type
Void or that can be eliminated to type Void.

The rule for equality type a ∼ b ∈ A is augmented with the precondition that a, b, and A
are all normal forms because otherwise our model would include equality types that are
themselves not normalizing. Furthermore, the condition a⇔ b is only required when the
equality proof reduces to refl. If the proof term reduces to a neutral term, then there is
nothing we need to show about the relationship between a and b.

Because we are working with open terms, we need a few additional syntactic lemmas
about reduction. First, a renaming b is a generalization of weakening when working with
simultaneous substitutions. It consistently maps the variables that appears in terms to other
variables. If a renamed term has been reduced, we can always recover the result of the
reduction without the renaming.

Lemma 5.1 (Par anti-renaming32). If a{b} ⇒ b0, then there exists some b such that b{b} =
b0 and a⇒ b.

We can show that parallel reduction preserves V-normal and neutral forms.

Lemma 5.2 (Par preserves V-neutral and normal forms33). If a⇒ b, then

• ne a implies ne b
• nf a implies nf b

Lemma 5.2 could have been strengthened to say that if ne a or nf a and a⇒ b, then a = b.
Since ne and nf captures terms free of V redexes, parallel reduction cannot take any real
reduction steps and can only step into a term itself. However, for the purpose of our proof,
Lemma 5.2 is sufficient.

All the properties we have shown in Section 3 and 4 before the fundamental lemma
can be proven in the same order, where the new cases due to rule I-Ne and the augmenta-
tion of neutral terms to rules I-Void, I-Eq, and I-Bool can be immediately discharged by
Lemma 5.2.

Furthermore, Lemma 5.2, in its current weaker form, would still hold after we extend
our equational theory with the function [ rule, where parallel reduction can take [ steps but
still preserves V-normal form.

31 semtypingopen.v:InterpExt 32 normalform.v:Par_antirenaming
33 normalform.v:nf_ne_preservation
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We also need to know that the wne a and wn a relations can be justified compositionally.
For example, an application has a neutral form when the function has a neutral form and
the argument has a normal form.

Lemma 5.3 (Wne application34). If wne a and wn b, then wne (a b).

Proof Immediate by induction over the length of the reduction sequences in wne a and
wn b. �

Furthermore, if we know that an application of a term to a variable has a normal form,
then we know that the term must have a normal form.

Lemma 5.4 (Wn extensionality35). If wn (a x), then wn a.

Proof By induction over the length of the reduction sequence in wn (a x). The conclusion
follows from Lemmas 5.1 and 5.2. �

Before we can prove the fundamental theorem and derive the normalization property as
its corollary, we need to additionally formulate and prove an adequacy property about the
logical relation. This property, that the interpretation of each type is a reducibility candi-
date, allows us to conclude that every term in each interpretation has a normal form. In the
previous section, we only needed a property of the interpretation of the Void type. However,
for this section, we need to know something about the interpretation of every type.

Furthermore, to prove this adequacy property, we need to strengthen it to also give us
more information about neutral terms as we proceed by induction. In particular, we need
to know that all terms that reduce to neutral forms are contained within the interpretation.
Therefore, we formally define when a set is a reducibility candidate (shortened as �') as
follows. Our definition of �' is inspired by Girard et al. (1989), but not identical since we
only care about weak normalization.

Definition 5.5 (Reducibility Candidates (CR)36). Let S be a set of terms.We say that S ∈�'

if and only if conditions �'1 and �'2 hold.

• S ∈�'1 ⇐⇒ ∀a, if wne a, then a ∈ S
• S ∈�'2 ⇐⇒ ∀a, if a ∈ S, then wn a

We now state and prove the adequacy lemma.

Lemma 5.6 (Adequacy37). If JAKi ↘ S, then we have S ∈�'.

Proof We start by strong induction over i. We are given the induction hypothesis that for
all j < i, JAKj ↘ S implies S ∈�'. Our goal is to show JAKi ↘ S implies S ∈�'.

By Definition 3.2, we have the equality JAKi ↘ S = JAKi
I ↘ S where I (i) := {A |

∃S, JAKi ↘ S}.We then proceed by structural induction over the derivation of JAKi
I ↘ S. The

34 normalform.v:wne_app 35 normalform.v:ext_wn 36 semtypingopen.v:CR
37 semtypingopen.v:adequacy
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only interesting cases are rule I-Pi and rule I-Set. The function case requires Lemmas 5.4
and 5.3, which we have shown earlier.

The rule I-Set case is the most interesting. We must show that for all j < i, the set
{A | ∃S, JAKj ↘ S} ∈�'. We immediately know that {A | ∃S, JAKj ↘ S} ∈�'1 by rule I-
Ne. It remains to show that {A | ∃S, JAKj ↘ S} ∈�'2, or equivalently, for all A, JAKj ↘ S
implies wn A. Suppose JAKj ↘ S for an arbitrary A. We have JAKj ↘ S = JAKj

I ↘ S where
I has the same definition from earlier but its domain restricted to numbers less than j.
We perform another induction on the derivation of JAKj

I ↘ S. All cases are trivial except
for the case for rule I-Pi. Our induction hypothesis immediately gives us wn A. To derive
wn (Πx:A.B), it remains to show wn B. We use the outermost induction hypothesis to show
that x semantically inhabits A, from which we derive wn (B{x/x}) and conclude wn B
through antirenaming (Lemma 5.1). �

The formulation of semantic well-typedness and the fundamental lemma from Section 4
remains unchanged. The proof of the fundamental lemma38 is still carried out by induction
over the typing derivation, where the additional neutral term related cases are handled by
Lemma 5.6, the adequacy property.

The normalization property then follows as a corollary of the fundamental theorem.

Corollary 5.7 (Existence of V-normal forms39). If Γ ` a : A, then wn a and wn A.

Proof By the fundamental lemma, we know that Γ � a : A. That is, for all d � Γ, there
exists some i and S such that JA{d}Ki ↘ S and a{d} ∈ S. We pick the d to be the identity
substitution id, which injects variables as terms. The side condition id � Γ is satisfied since
Lemma 5.6 says neutral terms, including variables, semantically inhabit any S0 where S0
is the interpretation of some type. With our choice of d, we have A{d} = A{id} = A and
a{d} = a{id} = a. Then we know that JAKi ↘ S and a ∈ S for some i and S. By Lemma 5.6,
we conclude that wn a and wn A. �

The extension of our logical relation to prove normalization of open and closed terms
closely mirrors the progression from normalization of closed terms (Harper, 20220) to nor-
malization of open terms (Harper, 20221) in the simply typed lambda calculus. Indeed, a
mechanization of normalization generalized to open terms appears in Abel et al. (2019). In
this setting, as above, adequacy must be proven before the fundamental theorem so they can
handle elimination rules such as rule T-App where the scrutinee is a neutral term. Dependent
types make the adequacy proof slightly more complicated because we also need to know
that every type has a normal form, not just terms. This complicates our proof specifically
in the rule I-Set case for our adequacy property (Lemma 5.6).

Overall, despite the dependently typed setting, it is in fact reassuring that once we have
laid the foundational technique for handling dependent types in our logical relation, the
extension to open terms mostly boils down to properties that can be independently derived
from the logical relation through syntactic means.

38 soundnessopen.v:soundness 39 soundnessopen.v:mltt_normalizing
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6 Existence of V[-normal forms

Wieczorek and Biernacki (2018); Abel et al. (2017); Adjedj et al. (2024) include the [ law
for functions in their equational theory and use relational models to justify its validity. In
our system, we can easily incorporate the function [ law to the equational theory of _Π by
adding the following parallel reduction rule.

P-AbsEta
y ∉ fv(a0) a⇒ a0

_y.((_x.a) y) ⇒ a0

In this section, we show how we easily extend the existence of V-normal forms from
Section 5 to the existence of V[-normal forms after this addition.

First, we recover the same confluence result about parallel reduction using the standard
techniques from Barendregt (1993); Takahashi (1995), though anti-renaming (Lemma 5.1)
must be proven before the diamond property (Lemma 2.5). Another complication is that
the anti-renaming property and the diamond property for parallel reduction are now proven
through induction on a size metric of lambda terms; rule P-AbsEta reduces a term that is
not a strict subterm.

Note that, after this extension, the specification of our logical relation does not require
any updates. The proof of the fundamental theorem also remains identical since the com-
plications introduced by [ are hidden behind the proofs of the diamond property and the
anti-renaming property. As before, ne and nf represent V-neutral and V-normal forms, and
the fundamental lemma shows us that every well-typed term has a V-normal form. However,
in the presence of the [ reduction rule, Lemma 5.2 tells us that [ reduction preserves V-
normal forms (i.e. does not produce new V-redexes). Furthermore, since the [ reduction
rule for functions strictly decreases the size of the term, the existence of V[ normal form
trivially follows.

Corollary 6.1 (Existence of V[-normal form). If Γ ` a : A, then a has V[-normal form.

A well-known issue with our approach is the failure of syntactic confluence when the
lambda term contains type annotations. A simple counterexample is _y:B.((_x:A.a) y)
where y ∉ fv((_x:A.a)); depending on whether rule P-AbsEta is performed on the whole
term or rule P-AppAbs is used on the inner V redex, we end up with the terms _x:B.a
(after U-conversion) or _x:A.a, where A and B are not necessarily syntactically equal terms.
Choudhury et al. (2022) resolve this problem by stating their confluence result in terms of
an equivalence relation that quotients out parts of the terms that are computationally irrel-
evant; the annotations of lambda terms are ignored since the behavior of a lambda term is
not affected by its type annotation. We believe the same approach is applicable to our proof.

The bigger issue is extensions such as [-laws for unit and products. Surjective pairing,
for example, is not confluent for untyped lambda terms Klop and de Vrijer (1989). The
relational, type-annotated, and Kripke-style models fromWieczorek and Biernacki (2018);
Abel et al. (2017); Adjedj et al. (2024) can be more easily extended to support these rules.
We note, however, that the issue with [ rules is not exclusive to dependently typed languages
and has been studied in more limited languages that are either simply typed (Pierce, 2004;
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Pfenning, 1997) or dependently typed but without large eliminations (Harper and Pfenning,
2005; Abel and Coquand, 2005). Common workarounds include type-directed conversion
and shifting the focus to obtaining [-long forms Abel and Scherer (2012).

While not without limitations, our simple proof demonstrates the core building blocks of
more complex arguments, thus paving the way for experimentation and eventual extension
to more expressive systems.

7 Mechanization

Consistency Normalization Syntactic metatheory
Syntactic typing 83 = =
Untyped reduction 344 = =
Neutral and normal forms - 273 -
Logical relation 338 430 -
Semantic soundness 192 211 -
Syntactic soundness - - 629
Total 957 1341 1056

Fig. 7. Nonblank, noncomment lines of code of the Coq Development. The marker = indicates that
the line count is the same as the column to the left. The marker - indicates the file does not contribute
to the total.

To demonstrate the scale of our proof scripts, Figure 7 shows the number of non-blank,
non-comment lines of code40 for each file of our development, including the base consis-
tency proof from Section 3 and 4 and the extension to V-normalization from Section 5.
For comparison, we have also proven syntactic type soundness through preservation 41 and
progress42.

The V[-normalization proof from Section 6 comprises 1568 lines of non-blank, non-
comment lines of code.We choose not to include it in the chart, because of slight differences
in lemma dependencies for untyped reduction and normal forms that make the compari-
son less informative. However, when compared to the V-normalization extension, the V[

extension has the same line count in the definition of the logical relation and the semantic
soundness proof.

The Autosubst 2 tool takes our 13 line syntax specification, written in higher-order
abstract syntax, and generates the Coq syntax specification, renaming and substitution
functions, and lemmas and tactics that allow reasoning about those functions. The auto-
generated syntax file (291 LOC) and other Autosubst library files are also not included in
the figure.

7.0.0.1 Axioms. Our Coq development assumes two axioms: functional extensionality and
propositional extensionality. The former is also required by the Autosubst 2 libraries. Both
axioms are known to be consistent with Coq’s metatheory. These axioms bridge the gap
40 calculated by the tokei tool, available from https://github.com/XAMPPRocky/tokei.
41 syntactic_soundness.v:subject_reduction 42 syntactic_soundness.v:wt_progress

https://github.com/XAMPPRocky/tokei
syntactic_soundness.v
syntactic_soundness.v
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between our mechanization and our informal proofs. For example, in set theory, to show that
two sets S0 and S1 are equal, it suffices to show the extensional property that∀G, G ∈ S0 ⇐⇒
G ∈ S1. We leverage this fact occasionally in our presented proofs. However, in Coq, sets of
terms (P(Term)) are encoded as the type tm -> Prop, a predicate over _Π terms. In axiom-
free Coq, predicates do not come with the extensionality property. Given two predicates %
and&, we cannot conclude that % =& when given a proof of ∀G, %(G) ⇐⇒ &(G). But this
is exactly the statement of predicate extensionality, an immediate corollary from functional
extensionality and propositional extensionality.

7.0.0.2 Encoding the logical relation in Coq. We next discuss specific details of the Coq
encoding of the logical relation presented in Section 3.

In the Coq mechanized proof, the definition of JAKi
I ↘ S has type Prop, where I has type

nat -> tm -> Prop and S has type tm -> Prop.
However, if desired, we could consistently replace the use of Prop with Coq’s predicative

sort Type in the definition of JAKi
I ↘ S. This alternative definition could be part of the

interpretation for any finite number of universes. The use of Type becomes troublesome
only when we attempt to define JAKi ↘ S, the top-level logical relation (Definition 3.2) that
recursively calls itself at smaller universe levels. Therefore, the one feature of _Π that truly
requires impredicativity is its countable universe hierarchy.

The definition of JAKi
I ↘ S has an almost one-to-one correspondence to the Coq defini-

tion. The main difference is the specification of I. In Section 3, we define I as a function
over numbers less than i, the universe level. In Coq, we only require I to be a function
with the set of natural numbers as its domain. In the Coq encoding of JAKi ↘ S, we define
I ∈N→P(Term) as follows.

I (j) =
{
{A | ∃S, JAKj ↘ S} when 9 < 8

∅ otherwise

Since I is only applied to numbers strictly less than i in rule I-Set, we can retroactively
show that the set we return in the 9 ≥ 8 case is junk data that does not affect the result of the
logical relation. This property allows us to recover the simple equation for JAKi ↘ S shown
in Definition 3.2.

Rule I-PiCoq shows how rule I-Pi is actually encoded in our mechanized proof.

I-PiCoq
JAKi

I ↘ S R ∈ S × P(Term)
∀a, ∃S0, (a, S0) ∈ R ∀a, ∀S0, if (a, S0) ∈ R, then JB{a/x}Ki

I ↘ S0

JΠx:A.BKi
I ↘ {b | ∀a, ∀S0, if (a, S0) ∈ R, then b a ∈ S0}

Compared to rule I-Pi, rule I-PiCoq replaces the function F with a total relation R.
The equivalence of these two rules follows from the fact that the logical relation is
a partial function (Lemma 3.7). In set-theoretic notation, rule I-Pi is more readable.
However, if we want to encode the same rule in Coq, we must encode F as a rela-
tion (with type tm -> (tm -> Prop) -> Prop) that satisfies the functionality con-
straint: forall a S0 S1, F a S0 -> F a S1 -> S0 = S1. In comparison, rule I-
PiCoq does not require this side condition and results in a simpler definition.
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We note that we cannot ascribe F the type tm -> (tm -> Prop) since Coq requires
functions of such type to be computable. While defining F as a computable Coq function
rather than a functional relation does result in a concise encoding of rule I-Pi, we will have
trouble instantiating F with the logical relation, which is defined as a relation that we prove
to be functional, rather than a computable function.

7.0.0.3 Automation. Our Coq mechanization heavily uses automation, supported by the
tools Autosubst 2 (Stark et al., 2019) and CoqHammer (Czajka and Kaliszyk, 2018).

We use the Autosubst 2 framework to produce Coq syntax files based on a de Bruijn
representation of variable binding and capture-avoiding substitution. In addition to these
generated definitions, Autosubst 2 provides a powerful tactic asimpl that can be used to
prove the equivalence of two terms constructed using the primitive operators provided by
the framework. This tactic simplifies the reasoning about substitution as many substitution-
related properties about syntax are immediately discharged by asimpl.

For other automation tasks that are not specific to binding, we use the powerful sauto
tactic provided by CoqHammer to write short and declarative proofs. For example, here is
a one-line proof of the triangle property about parallel reduction, from which the diamond
property (Lemma 2.5) follows as a corollary. The triangle property states that if a⇒ b, then
b⇒ a∗, where a∗ is the Takahashi translation (Takahashi, 1995) which roughly corresponds
to simultaneous reduction of the redexes in a, excluding the new redexes that appear as a
result of reduction.

Lemma Par_triangle a : forall b, (a ⇒ b) -> (b ⇒ tstar a).
Proof.

apply tstar_ind; hauto lq:on inv:Par use:Par_refl,Par_cong ctrs:Par.
Qed.

In prose, the triangle property can be proven by induction over the graph of
tstar a, the Takahashi translation. Options inv:Par and ctrs:Par say that the proof
involves inverting and constructing of the derivations of parallel reduction. The option
use:Par_refl,Par_cong allows the automation tactic to use the reflexivity and congru-
ence properties of parallel reduction as lemmas.

The flag lq:on tunes CoqHammer’s search algorithm. While this flag appears arcane,
when developing our proof scripts we never specify this option manually. Instead, we first
invoke the best tactic provided by CoqHammer, specifying only the inv, ctrs, and lem-
mas that we want to use. The best tactic then iterates through possible configurations and
provides us with a replacement with the tuned performance flags that save time for future
re-execution of the proof script.

The automation provided by CoqHammer not only gives us a proof that is shorter and
more resilient to changes, but also provides useful documentation for readers who wish to
understand the mechanized proof. Although automation performs extensive search, we can
configure it to not use lemmas or invert derivations that are not specified in the use or inv
flags.
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8 Related Work

8.1 Logical relations for dependent types

In the most general sense, a logical relation can be viewed as a practical technique that uses
a type-indexed relation to strengthen the induction hypothesis for the property of interest.
The original idea of this technique can be traced back to Tait (1967). This proof maps
types to sets of terms satisfying certain properties related to reduction. The same idea is
explained in Girard et al. (1989) and extended to prove strong normalization of System F.
Tait’s method has also been successfully applied to dependently typed languages to prove
strong normalization Martin-Löf (1975); Luo (1990); Geuvers (1994); Barendregt (1993).

However, the pen-and-paper representation of logical relations proofs can be challeng-
ing to adapt to a theorem prover since many details are hidden behind concise notations.
For example, Geuvers (1994) presents the interpretation for types as an inductively defined
total function over the set of syntactically well-formed types. In untyped set theory, it makes
sense to define the logical relation as a simply-typed function that takes a type and returns
some set; however in constructive type theory, the metalogic of Coq and Agda, the inter-
pretation function must be a dependently-typed function whose return type depends on the
derivation of the well-typedness of its input. The well-typedness derivation and the proof of
the classification theorem are examined in the body of the interpretation function to decide
whether an argument of an application should be erased during interpretation. As a result,
this definition causes difficulties for modern proof assistants. Due to the impredicativity
of the object language, Geuvers (1994)’s proof cannot be encoded in Agda, which has a
predicative metatheory. Due to the use of proof-relevant derivations, even in Coq, a proof
assistant that supports impredicativity, one would need to constantly juggle between the
impredicative but irrelevant sort Prop sort and the predicative but relevant sort Type.

More recent work such as Abel and Scherer (2012) and Abel et al. (2008) make their
definitions more explicit and precise and thus more directly encodable in proof assistants.
Our logical relation resembles their definition of a semantic universe hierarchy, although we
close our relation under expansion with respect to parallel reduction rather than weak-head
reduction. Furthermore, Abel and Scherer (2012) and Abel et al. (2008) use their semantic
universe hierarchy as a measure to define Kripke-style logical relations, from which they
derive the correctness of their conversion algorithms. In our work, we use the semantic
universe hierarchy directly in our definition of semantic typing because it is sufficient for
our purposes (consistency and normalization).
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8.2 Mechanized logical relations for dependent types

U Ind C L E A Main results
_Π (this work) N Id, Bool U Ø 1 Consistency and normalization
_\ 0 Id, Nat U % 1 Consistency
Core Nuprl N W-Types E Ø 2 Consistency
NBE-in-Coq 1 Nat T % 2 Correctness of NBE
_Π*N 1 Nat, Σ T Ø 2 Decidability of conversion
MLTT-á-la-Coq 1 Id, Nat, Σ T Ø 2 Decidibility of type checking

Universes: Countable (N), Zero (0), One (1)
Inductives: Identity types (Id), Natural numbers (Nat), Σ-types (Σ), W-types
Conversion: Untyped (U), Typed (T), Extensional (E)
Large Eliminations: Included (Ø), not included (%)
Arity of interpretation: Sets of terms (1), Relations between terms (2)

_\ Casinghino et al. (2014) (logical fragment only)
Core Nuprl Anand and Rahli (2014)
_Π*N Abel et al. (2017)
NBE-in-Coq Wieczorek and Biernacki (2018)
MLTT-á-la-Coq Adjedj et al. (2024)

Fig. 8. Feature matrix for dependently typed languages with mechanized logical relations

Figure 8 presents several mechanized proofs that feature logical-relations arguments for
dependently-typed languages. Each of these proofs is significantly larger than than our
development; but they also prove more results about different object languages.The table
provides a comparison between the various features of their object languages, but is not
exhaustive. For example, Casinghino et al. (2014) and Anand and Rahli (2014) both have
support for partial programs. However, we include features that we believe to be most
impactful to the definition of the logical relation.

Casinghino et al. (2014) introduce _\ , a dependently typed programming language that
uses modality to distinguish between logical proofs and programs. The consistency proof of
_\ ’s logical fragment has been mechanized in Coq through a step-indexed logical relation;
step-indexing is required to model the programmatic fragment, which interacts with the
logical fragment. The lack of polymorphism and type-level computation means their logical
relation can be defined recursively for well-formed types using a size metric, which has
been used in Liu andWeirich (2023). Their development is around 8,000 lines of nonblank,
noncomment code.

Abel et al. (2017) mechanize in Agda the decidability of type conversion rule for a depen-
dently typed language with one predicative universe level and a typed judgmental equality
that includes the function [ law. They use a Kripke-style logical relation parameterized over
a type-directed equivalence relation satisfying certain properties to facilitate the reuse of
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their definition. The logical relation is defined using the induction-recursion scheme, which
is available in Agda but not in Coq. Their development involves around 10,000 lines of
Agda code. Adjedj et al. (2024) transports the logical relation from Abel et al. (2017) in the
predicative fragment of Coq and further extends the decidability of type conversion result
from Abel et al. (2017) to the decidability type checking of a bidirectional type system.
Their development has around 30,000 lines of Coq code.

Anand and Rahli (2014) mechanize the metatheory of Nuprl (Constable et al., 1986) in
Coq. This metatheory is an extensional type theory with features such as dependent func-
tions, inductive types, partial types, and a full universe hierarchy. They construct a PER
model in Coq to show the logical consistency of their language. Their development has been
further extended with features such as intersection types, union types, and quotient types.
The extensive coverage of features results in a Coq development with around 330,000 lines
of code. Wieczorek and Biernacki (2018) mechanize the normalization-by-evaluation algo-
rithm in Coq for a dependently typed languagewith one predicative universe, similar to Abel
et al. (2017) and Adjedj et al. (2024). However, since their type system has no elimination
form for natural numbers, the only base type from the object language, large elimination is
not supported despite the one predicative universe. Their development has around 20,000
lines of Coq code. Both Anand and Rahli (2014) andWieczorek and Biernacki (2018) lever-
age the impredicative Prop sort of Coq to define the interpretation of dependent function
types and thus are closely related to our mechanization. Anand and Rahli (2014) further
show it is possible to encode a finite universe hierarchy without the use of either impred-
icativity or induction-recursion. Their encoding of a countable universe hierarchy relies on
impredicativity, similar to our development.

8.3 Other mechanized metatheory of dependent types

Barras (2010); Wang and Barras (2013) assign set-theoretic semantics to dependent type
theory in Coq. Unlike the previous efforts, which primarily focus on predicative type theory
and more direct reducibility models, Barras (2010); Wang and Barras (2013) tackle exten-
sions of ��l , a system that incorporates a predicative universe on top of the impredicative
sort in the Calculus of Constructions. We choose to focus on a syntactic term model so we
do not have to take the extra step of mechanizing mathematical objects such as sets and
domains.

There are other mechanized developments for dependently typed systems that only
involve properties that are derivable through syntactic means. For example, Sozeau et al.
(2019) prove the correctness of a type checker for the Predicative, Cumulative Calculus of
Inductive Constructions (PCUIC), Coq’s core calculus, assuming the strong normalization
property of the object language. Weirich et al. (2017) define System D, a core calculus of
dependent Haskell, and prove the syntactic type soundness of the type system. Because
System D includes nontermination, they proved the consistency of definitional equality
from the confluence of parallel reduction.

Compared to the systems described here, the most notable features we are missing are
cumulativity and impredicativity. Our semantic model already satisfies the cumulativity
property (Lemma 3.9), but we need to extend our convertibility relation into a subtyping
relation in our syntactic typing rules. Impredicativity, on the other hand, is known to be
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difficult to model when the impredicative sort is at the bottom of a predicative universe hier-
archy; in this scenario, the erasure technique from Geuvers (1994) is not applicable (Abel,
2013). Whether there is a similarly short and simple treatment for impredicativity remains
an open question.

9 Discussion

Our short consistency proof achieves the goal of demonstrating the technique of proof
by logical relation for dependently typed languages. However, what remains unanswered
is what makes our development significantly shorter. Are we proving simpler results for
smaller languages, or making more use of automation, or is our proof technique genuinely
more efficient?

First, the metatheoretic properties that we prove are indeed simpler. Compared to Core
Nuprl, our system lacks extensionality, which would require a relational model to justify
consistency. Because the conversion rule for _Π is untyped, we do not need a Kripke-style
relational model to prove Π-injectivity among other properties, unlike systems with typed
conversion. Furthermore, we prove the existence of normal forms, which induces a sim-
ple normalize-and-compare procedure for type conversion Pierce (2004). Wieczorek and
Biernacki (2018); Abel et al. (2017), on the other hand, need to show how their algorith-
mic conversion procedure is sound and complete with respect to their respective declarative
equational theory.

Second, the definition of our logical relation does contribute to a more concise proof. In
rules I-Red and I-Bool, we choose parallel reduction, a full reduction relation, to close over
our semantic interpretation of types and terms. Parallel reduction is non-deterministic, but
it satisfies useful structural properties such as congruence (Lemma 2.3) and the diamond
property (Lemma 2.5). We pay the price of using a non-deterministic reduction relation
when we want to prove that our logical relation is a partial function; because of rule I-Red,
we can have A⇒ B0 and A⇒ B1, where B0 and B1 each have their separate interpretations
that we have to prove to be equal. Fortunately, this complexity is reconciled by the diamond
property, which is easy to derive syntactically.

In contrast, Abel et al. (2017) and Wieczorek and Biernacki (2018) employ a deter-
ministic weak head reduction relation. A deterministic reduction relation makes the
functionality of a logical relation trivial to prove, but fails to satisfy the substitution prop-
erty (Lemma 2.4), an issue that has been observed by Casinghino et al. (2014). If we had
chosen to work with a deterministic reduction relation, we would likely need results such
as the factorization theorem (Takahashi, 1995; Accattoli et al., 2019) in our development
before we can prove the fundamental theorem, leading to a more complicated proof.

With untyped conversion, we sidestep the relational, Kripke-style logical relation found
in other mechanized proofs. However, our early dependence on confluence before the
fundamental theorem is established can be alarming. In a system with type-directed reduc-
tion, confluence is not immediately available because it depends on Π-injectivity, which
is usually only proven after the fundamental theorem. Fortunately, there are syntactic
workarounds for the Π-injectivity problem that allow us to recover the confluence property
independently from the logical relation. Siles and Herbelin (2012) generalize the notion of
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Type Parallel One Step Reduction from Adams (2006) to syntactically prove Π-injectivity
for arbitrary Pure Type Systems. Weirich et al. (2017) add Π-injectivity to their equational
theory, thus allowing subject reduction to be proven independently from confluence. By
adopting these techniques that allow us to derive confluence early even for systems with
type-directed reduction, we believe our proof technique can significantly shorten the exist-
ing logical relation proofs for systems with typed judgmental equality. We leave that as part
of our future work.

10 Conclusion

In this work, we present a short and mechanized proof by logical relations for a dependently
typed language with a full universe hierarchy, large eliminations, an intensional identity
type, and dependent eliminators. We show the extensibility of our approach by proving
the existence of V[-normal forms with only small and mechanical changes to our proof
development. Our Coq mechanization leverages existing Coq libraries for reasoning about
metatheory and for general purpose automation, allowing us to significantly reduce the
verbosity typically associated with mechanized proofs. The result is a declarative proof
style that rivals pen and paper.

Related work gives us confidence that we could extend our logical relation to include fea-
tures such as full inductive datatypes, irrelevant arguments, and type-directed conversion;
however, it is not clear how much of the brevity of this development can be maintained.
Furthermore, we hope that mechanized logical relations proofs will eventually grow to
include other features found in dependent type theories, such as impredicative universes,
universe polymorphism, and cumulativity. Regardless, our development shows that proofs
by logical relations for dependent types are accessible and do not require months of effort
to implement. We hope our proof can inspire researchers to more frequently mechanize
results, such as consistency and normalization, for their dependent type theories.
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