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In dependently-typed functional programming languages that allow general recursion, programs used as

proofs must be evaluated to retain type soundness. As a result, programmers must make a trade-off between

performance and safety. To address this problem, we propose System DE, an explicitly-typed, moded core

calculus that supports termination tracking and equality reflection. Programmers can write inductive proofs

about potentially diverging programs in a logical sublanguage and reflect those proofs to the type checker,

while knowing that such proofs will be erased by the compiler before execution. A key feature of System DE

is its use of modes for both termination and relevance tracking, which not only simplifies the design but also

leaves it open for future extension. System DE is suitable for use in the Glasgow Haskell Compiler, but could

serve as the basis for any general purpose dependently-typed language.
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1 INTRODUCTION
Consider the following unsettling Haskell program that applies a function f of type a -> b to a

term x of some arbitrary type c.

badApp :: forall a b c. (a -> b) -> c -> b
badApp f x = case badEq of

Refl -> f x
where badEq :: a :~: c

badEq = badEq

With the function badApp, it is possible to write the expression (badApp not "str") to attempt

to perform the bit flip operation on a string. Compared to proof assistants such as Agda [Agda

Development Team 2023] and Coq [Coq Development Team 2019], Haskell [GHC Development

Team 2023] does not rule out bogus equality “proofs” like badEq. In the body of badApp, by pattern

matching on badEq, we are allowed to treat x as if it has type a because the equality evidence

convinces the type checker that a and c are convertible. It is worth noting that despite the unsafe

nature of the badApp call, programs like badApp do not violate the soundness of Haskell’s type

system, as the potentially dangerous operation is protected by a pattern match on badEq that causes
the program to loop indefinitely.
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Unfortunately, the lack of termination tracking means that none of the explicitly constructed

proofs in Haskell can be trusted. All such proofs must be evaluated at run time because the type

checker does not have enough information to determine whether they will eventually produce

evidence of the equality. The actual evidence produced contains no information itself; only its

presence is needed to justify the safety of the computation. But computing this evidence can be

expensive. In practice, this means programmers must make a choice between type safety and

performance since executing proofs at run time can induce overhead that is not negligible for

performance-critical code. Christiansen et al. [2019] observed this limitation in their implementation

of Crucible, a framework for writing symbolic executors. To achieve reasonable performance, they

created a version of their code that replaced evidence computation with unsafeCoerce, avoiding the
runtime cost of executing proofs but losing the type soundness guarantees of Haskell’s type system.

This trade-off is not ideal; we want programmers to write safe code without such performance

penalties.

To address this problem, we present System DE, a calculus suitable to be used as the explicitly-

typed core language of the Glasgow Haskell compiler [GHC Development Team 2023]. We focus

our attention at this level because the core language specifies the semantics of Haskell independent

of the complexities of its many source language features and type inference algorithm. The type

system of System DE includes both termination and relevance tracking, allowing it to identify

evidence computations that can safely be erased during compilation.

System DE is a reformulation of System DC [Weirich et al. 2017], a dependently-typed core

language, and a guideline for the extension of Haskell with dependent types. Although the solution

that we explore in the context of System DE would also benefit non-dependent versions of Haskell’s

core language [Breitner et al. 2016; Weirich et al. 2013], and could be integrated into today’s Haskell,

we choose to work in a dependently-typed framework because of its uniformity, relevance to other

languages that might benefit from these ideas, and future relevance to Haskell.

Overview of contributions. In this paper, we first introduce the ideas that underlie System DE

through example. Section 2, imagines a future extension of Haskell that takes advantage of the new

capabilities that System DE provides. Then in Section 3, we give a formal presentation of System

DE and its semantics.

System DE’s type system tracks termination and relevance through the use ofmodes (Section 3.1).

The mode 𝐿 carves out a logical sublanguage that is not only weakly-normalizing but also expressive

enough to encode inductive proofs. This language includes an equality type, and terms of the

equality type in the 𝐿 fragment can be reflected and made available to the type checker without an

explicit pattern match. As a result, logical equality proofs are erasable, and incur no computational

cost for their use. Meanwhile, the 𝑃 fragment does not pose any restrictions on termination or

universe consistency, thus allowing backward-compatibility with existing Haskell code.

The relevance tracking mechanism of System DE is not limited to equality proofs. Rather, modes

provide a general framework of relevance tracking for arbitrary terms where proof terms of

equality can fit in as a special case (Section 3.2). Explicit relevance annotations are important for

a dependently language such as System DE since both terms and types may appear as part of a

specification that is not needed at runtime. On the other hand, there are use cases such as type

providers and generic programming where the specification itself may be computed at runtime.

Therefore, System DE provides users with a mechanism to precisely specify the relevance of both

terms and types. Furthermore, relevance tracking in System DE affects both erasure at runtime

and equational reasoning at compile-time. The compiler can erase irrelevant terms during code

generation, but the type checker can also take advantage of irrelevance at compile-time by ignoring

the irrelevant arguments when proving equality.
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Type checking System DE is decidable and syntax directed. Like other explicitly-typed core

languages for GHC [Sulzmann et al. 2007], the syntax of System DE includes explicit-but-irrelevant

evidence, called coercions, that must be present when type casting. However, in the presence of

equality reflection, System DE acts like an extensional type theory (Section 3.3) without sacrificing

decidable type checking. The typed operational semantics propagates these coercions through a

combination of administrative and computational rules (Section 3.4).

Section 4 presents an overview of our type soundness theorem for System DE, which we have

mechanized using the Coq proof assistant [Coq Development Team 2019]. Machine-checked results

are marked with their locations in our companion artifact [Liu and Weirich 2023]. The ability to

reflect arbitrary equality proofs from the 𝐿 fragment means that this proof is a bit more difficult

than prior work—we now need to define a logical relation to prove the consistency of our equality

judgment (Section 4). This difficulty stems from the specification of the semantic rules and the

definition of the logical relation itself under the presence of explicit coercions and features such as

dependent pattern matching. Our proof artifact is suitable for future extension and exploration:

both in pursuit of extensions to the Haskell language and investigations of a syntax directed variant

of extensional type theory.

System DE subsumes and reconciles features that have been explored separately in prior work.

However, integrating explicit coercion proofs, relevance tracking, termination tracking, and equality

reflection into the same language requires more than simple aggregation. But, by leveraging modes,

we are able to reconcile these features into Dependent Haskell with minimal additional complexity.

Indeed, System DE eliminates a feature found in System DC: coercion abstraction is no longer

necessary in the presence of equality reflection. Furthermore, the use of modes also makes System

DE extensible to features such as irrelevant strong existentials, call-by-value semantics, and extended

𝐿 and 𝑃 interactions (Section 5).

Finally, in Section 6, we compare System DE to its predecessors. In particular, we contrast our

designs with prior work that inspired our use of modes and provide a detailed comparison to

alternative approaches for implementing relevance tracking and termination tracking.

2 PROGRAMMINGWITH REFLECTED EQUALITY PROOFS
The ability to reflect terminating computation as type checker evidence is a powerful language

feature, as we demonstrate in this section through examples. The examples below appear in the

context of a hypothetical Dependent Haskell, and require extensions to GHC’s type inference

algorithm for elaboration to our core language System DE.

2.1 Reasoning with Propositional Equalities
One domain that benefits from the use of dependent types is working with tables and data

frames [Wright et al. 2022]. Consider the following data type definitions that can be used to

represent a typed CSV file. These definitions rely on a length-indexed vector type Vector (not

shown).

newtype CSV (n :: Nat) (fs :: [Type]) = Frame {
rows :: Vector n (Row fs)

}
data Row (fs :: [Type]) where

Nil :: Row []
(:>) :: forall f fs. f -> Row fs -> Row (f:fs)

The CSV type is parameterized by the number of rows n and a list of types for the columns. Each

Row is a heterogeneous list or HList [Kiselyov et al. 2004] indexed by the types of values in that
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row. In this definition, the type of the constructor (:>) indicates that the arguments f and fs
should be erased by the compiler (specified by the keyword forall) and that f and fs should be

inferred by the type checker (specified by the .).
For example, here is a table containing the names, ages and favorite colors of several students:

table :: CSV 3 [String, Int, Color]
table = Frame {

rows = ("Bob" :> 12 :> Blue :> Nil) ::>
("Alice" :> 17 :> Green :> Nil) ::>
("Eve" :> 13 :> Red :> Nil) ::> VNil)

}

and a table containing only empty rows, defined using a function vreplicate that creates a Vector
of the appropriate size.

empty :: foreach n -> CSV n []
empty n = Frame (vreplicate n Nil)

In this definition, the keyword foreach in the type means that n is needed at runtime so that

vreplicate knows how long of a vector to make. The -> means that n must be explicitly provided

by the programmer. (If the quantification were instead foreach n., then n would be a runtime

relevant argument that that the compiler must infer.)

Working with this data structure means that all operations must describe the size and types of

the frames that they work with. For example, a horizontal composition function, called concat,
which could be used to concatenate two DataFrames with the same number of rows, might be

given the following type.

concat :: forall n fs fs'. CSV n fs -> CSV n fs' -> CSV n (fs ++ fs')

The type system ensures that the output of concat has the same number of rows as its input lists

and that the columns are extended properly.

Note that empty is an identity element for horizontal table concatenation. Because this table

has no columns, for any table t of type CSV n fs, the expression concat t empty should be

equal to t. However, if we try to use concat t empty in a context that expects an expression

of type CSV n fs, the type checker will complain since concat t empty really has the type

CSV n (fs ++ []). Because list concatenation is defined through recursion over the list on the

left, the expression fs ++ [] does not reduce to fs when fs is an abstract variable. Dependently

typed languages require evidence that the type fs ++ [] is equal to the type fs.
In (Dependent) Haskell, we can calculate this evidence with a recursive function that returns a

propositional equality result. Propositional equality is defined in Haskell with the following data

type.

data a :~: b where
Refl :: a :~: a

With this type, we can write a short function that calculates this evidence. Below, the list l is

quantified by foreach because it is analyzed via pattern matching.

appendNilEq :: foreach (l :: [Type]) -> (l ++ []) :~: l
appendNilEq [] = Refl -- know that l is [] so must show goal

-- ([] ++ []) ~ []
-- this is true via reduction

appendNilEq (x : xs) = -- know that l is (x : xs) so must show goal
-- ((x:xs) ++ []) ~ x:xs
-- LHS reduces to x:(xs ++ [])
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case appendNilEq xs of -- calculates evidence that xs ++ [] :~: xs
Refl -> Refl -- type inference uses this evidence to

-- show goal via congruence

We note that the concise way of consuming an equality proof may appear surprising to programmers

who are used to a more explicit style of eliminating equalities, but it is in fact grounded in the

capability of the inference algorithm of today’s Haskell implementation, as evidenced by the

reformulated version of the appendNilEq function using the singletons library.

appendNilEqSing :: forall (l :: [Type]). Sing l -> (l ++ '[]) :~: l
appendNilEqSing SNil = Refl
appendNilEqSing (SCons x xs) =
case appendNilEqSing xs of
Refl -> Refl

Despite the minor syntactic differences, neither example requires the programmer to explicitly

provide the motive for substituting in the equality.

With this method of evidence calculation in hand, we can use appendNilEq in a simplistic

example that calls concat with an empty frame. This code must create the evidence before the

type checker can use it to coerce the type CSV n (fs ++ []) to CSV n fs.

concatNil :: foreach n fs -> CSV n fs -> CSV n fs
concatNil n fs csv =
case appendNilEq fs of
Refl -> concat csv (empty n)

However, this example use of propositional equality is problematic in Dependent Haskell. While

we can get the code to type check, it must do runtime work to compute the evidence necessary for

the type coercion. Every time that concatNil is called, the code for appendNilEq must produce

the evidence that is used to coerce the type. Furthermore, in order to produce this evidence, the list

of types fs must be provided as a runtime argument to concatNil and cannot be erased.

2.2 Our Solution: Reflecting Logical Evidence
To address this issue, our solution has two components. First, we adopt the idea of using labels or

modes to keep track of the termination of terms, first explored in the Zombie Trellys language [Cas-

inghino et al. 2014]. The type system marks some parts of the program as logical, using the mode 𝐿,

to indicate that it is guaranteed to terminate.

Second, we replace the propositional equality type, :~:, with a primitive abstract type :=: and

introduce two new keywords that work with this type. The introduction form, reify, instructs
type inference to construct evidence for an equality, much like the Refl data constructor above.
However, instead of being eliminated through pattern matching, evidence of propositional equality

can be reflected directly back to the type system. The expression reflect e1 in e2 takes a logical

expression e1, which computes an equality of type a :=: b, and provides that information to the

type checker when type checking e2. Unlike case analysis, reflection has no runtime effect.

We use the label 𝐿 to annotate terms and parameters that construct evidence for equalities. For

example, the inductive proof that (l ++ []) :=: l can be written as follows.

appendNilEq ::𝐿 foreach (l ::𝐿 [Type]) -> ((l ++ []) :=: l)
appendNilEq [] =

reify
appendNilEq (x:l) =

reflect (appendNilEq l) in reify
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The termination labels tells the type checker to ensure that the definition of appendNilEq is well-

founded and that it can only be applied to inductive lists (i.e. lists from the 𝐿 fragment). In the

inductive case, we no longer need to pattern match on the result of the recursive call. Because the

term appendNilEq l is in the 𝐿 fragment, we can directly reflect it to the coercion proof.

Furthermore, we can define an efficient version of concatNil that does not require the evaluation
of the proof object and treats fs as an erased argument.

concatNil :: foreach n -> forall fs𝐿 -> CSV n fs -> CSV n fs
concatNil n fs csv =

reflect (appendNilEq fs) in
concat csv (empty n)

The reflection of the term appendNilEq is safe because it is from the logical fragment. It is impossible

to provide bogus evidence. Furthermore, reflected code is erasable. Even though the evidence

calculation requires fs, the operational semantics of our language never evaluates the equality

passed to reflect. Therefore, even though appendNilEq expects a relevant argument, we are

allowed pass in the irrelevant argument fs since the reflected equality proof appears in an irrelevant
position.

2.3 Relevance Tracking through Modes
Dependent Haskell already has a design

1
for using quantifiers to separate runtime and erased

arguments. As we saw above, these quantifiers can specify relevance independently from whether

an argument is inferred by the type checker.

Under the hood, relevance tracking in Dependent Haskell is based on prior work [Eisenberg

2016; Weirich et al. 2017], that uses the syntactic occurrence of variables in terms to determine

relevance [Barras and Bernardo 2008]. But this distinction can be made instead via modes. The

type systems EPTS [Mishra-Linger and Sheard 2008], QTT [Atkey 2018] and DDC [Choudhury

et al. 2022] mark variables that are not used inside a function body with a label that indicates

irrelevance. Because our language already uses modes to keep track of termination, it is convenient

to use a similar mechanism to keep track of relevance. This alternative implementation of relevance

tracking does not affect the surface language syntax. We can continue to use forall and foreach
quantifiers to indicate relevance.

In dependently-typed languages, relevance tracking is also important at compile time, especially

when working with data structures that contain embedded proofs. We would like the type checker

to ignore these proofs during equational reasoning.

For example, suppose we would like to represent CSV headers, the names of the columns in a

CSV table. However, we would also like the type system to maintain the invariant that the header

names are unique so that that we can non-ambiguously access data stored in the table.

We can express this idea with the following data structure. Adding a new column name to a

header via (:+) requires evidence that the column name is not already present. This evidence is

irrelevant, logical, and should be implicitly provided by the compiler.

data Header where
HNil :: Header
(:+) :: foreach (s :: String) (tl :: Header)

-> forall (pf ::𝐿 s `elem` tl :=: False). Header

By making the equality proof implicit, we can easily construct constant Headers by treating the

(:+) constructor as a binary operator.

1
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0378-dependent-type-design.rst
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We can then use headers to distinguish CSV files that use similar types of columns.

data CSV (n :: Nat) (h :: Header) (fs :: [Type]) = ... -- omitted

table :: CSV 3 ("Name" :+ "Age" :+ "Favorite Color" :+ HNil)
[String, Int, Color]

table2 :: CSV 3 ("Name" :+ "Score" :+ "Least Favorite Color" :+ HNil)
[String, Int, Color]

For example, if we want to add the rows of two tables together, we can require that this operation

only works when the tables have the same headers and column types.

addRows :: forall n h fs. CSV n h fs -> CSV m h fs -> CSV (n + m) h fs

In a call to this function, the type checker must determine that the headers of the two tables

are equal. And during this process, we would not want the type checker to have to reason about

the equivalence of the embedded uniqueness proofs in the header type. The forall quantifier we

attach to the equality proof in Header not only ensures that the proof is erasable at runtime, but

also informs the type checker to ignore the proof when checking for type equality.

2.4 Precise Termination Tracking
In a functional language where the only side effect is nontermination, we are allowed to use

potentially diverging terms in types, as long as we are not overly worried about termination of

the type checker itself. Haskell has long allowed the possibility for divergent computation at

compile time, through the use of the UndecidableInstances flag. However, other than disabling

the simplistic analysis used in types, Haskell programmers have little control over termination

behavior of their code. The transition to Dependent Haskell must accommodate the fact that, by

default, the termination behavior of most Haskell code is unknown.

In contrast, in Coq and Agda, code must pass the termination checker by default, which may be

disabled through the use of annotations or flags to the type checker. In particular, Agda programmers

may annotate individual definitions using the TERMINATING or the NON_TERMINATING pragma; the

latter additionally prevents the type checker from unfolding the definition during type equality. Coq

programmers have less control, but can use the flag –type-in-type to disable universe consistency
checking and can disable guardedness checking.

Disabling the type checker to allow programs such as badApp can be dangerous. Because the

default behavior is that everything terminates, and because propositional equality is used perva-

sively, the OCaml extraction backend for Coq, the MAlonzo compiler backend for Agda, and the

Idris compiler all aggressively erase equality proofs, even those that could diverge. As a result, an

extracted program, like badApp, could crash with a type error at runtime rather than entering an

infinite loop.

Disabling the termination checker on a per-definition basis, as is permitted by Agda, is infective.

As a result, any code defined in the scope of such definitions could diverge, even if it passes Agda’s

termination checker. To guarantee consistency, Agda provides the coinfective --safe flag, which

ensures that a module and its dependencies do not contain features that may violate consistency.

However, the --safe flag conservatively rejects a program even if a partial function from the

dependencies is never used in the module declared as safe. Idris is more similar to Dependent

Haskell. The totality checker is opt-in and can be enabled for an entire module. While the compiler

ensures the dependencies of a total function are also total, it will not complain if an imported

module contains a partial function as long as that partial function is never used in the body of a

total function. However, tracking termination with modes provides even more precise analysis.
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Modes
𝜌 ::= 𝑅 | 𝐼 relevance, (R)elevant and (I)rrelevant, 𝑅 < 𝐼

𝜃 ::= 𝐿 | 𝑃 termination, (L)ogic and (P)rogram, 𝐿 < 𝑃

𝛿 ::= 𝜌, 𝜃 combined, pointwise ordering

Contexts
Γ ::= · | Γ, x :𝛿 A variables annotated by mode

Terms
a, b,A, B ::= ★ | x | Πx :𝛿 A.B sort, variables and function types

| 𝜆𝛿x :A.a | a b𝛿 abstractions and applications

| a ≡𝜃 b | reify𝜃 𝛾 equality type and proof terms

| a ▷ 𝛾 coerced terms

| N | zero | succ a natural number type and constructors

| indA a b1 (x .b2) natural number induction, see Section 3.5

Coercions
𝛾 ::= reflect a equality reflection

| . . . others, see Section 3.3 and Appendix A.1

Fig. 1. Syntax of System DE

Type system
Γ ⊢ a :

𝜃 A Typing Figures 3 and 6 Appendix A.2.1

Γ ⊢ a :
𝛿 A Typing, relevance-moded Figure 3 Appendix A.2.2

⊢ Γ Context formation Figure 3 Appendix A.2.3

Γ; Γ0 ⊢𝜃 𝛾 : a ∼ b Equality proofs Figure 4 Appendix A.2.4

Operational semantics
Γ ⊢𝜃 a { b Computational reduction Figure 5 Appendix A.3.1

Γ ⊢𝜃 a −⇀ b Administrative reduction Figure 5 Appendix A.3.3

Fig. 2. Summary of System DE judgement forms

Because modalities are part of the type system, the compiler can restrict the termination behavior

of all arguments that can be supplied to a function, even if those arguments are not present when

the function is compiled. Furthermore, our language allows reasoning of diverging programs. Given

a diverging computation loop, The keyword reify can witness the equality loop :=: loop while

still belonging to the logical fragment. The equality can be safely erased without affecting type

soundness because the diverging term only appears inside the equality type. The proof of the

equality, on the other hand, is already in normal form.
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3 SYSTEM DE
In this section, we describe System DE, a dependently-typed language that supports relevance

tracking and sound equational reasoning through a logical sublanguage. These two features are

governed by the modes 𝜌 and 𝜃 respectively. We use the metavariable 𝛿 to refer to the combination

of these two modes and annotate variables in the context and bound variables in the term syntax

with 𝛿 . The syntax of System DE appears in Figure 1.

Our formalization of System DE includes dependently-typed functions, an equality type, and

natural numbers. We defer discussion of natural number induction until Section 3.5. Due to the

presence of the ★ : ★ axiom, not all programs terminate.
2
However, type conversions require an

explicit coercion proof 𝛾 , which ensures that type checking terminates. The type system is syntax

directed; given an input context Γ, mode 𝜃 and term a, we can write an algorithm that decides

whether the term type checks and if so, determines its unique type. For mechanization reasons

described in section 4, our formal system also includes a mode annotation in function applications

a b𝛿 , but because this mode can be uniquely determined by the type of the function, we omit it

from examples.

3.1 A Type System with Dependency Tracking
The semantics of System DE are specified by the judgement forms listed in Figure 2. For many of

the judgments, the figures in the main text provide an excerpt of the rules, deferring the listing of

the full system to the Appendix.

The modes 𝜌 and 𝜃 extend the System DE type system with dependency tracking. Modes are

ordered and programs checked at one mode cannot depend on subexpressions that are marked

with a higher mode. Dependency tracking works for both termination and relevance, but in subtly

different ways as we explain below. Relevance tracking in System DE is inspired by the DDC type

system developed by Choudhury et al. [2022] while our approach to termination checking is a

variation of the type system developed by Casinghino et al. [2014].

The typing judgment (Figure 3) is annotated by a termination mode, 𝜃 , and has the general form

Γ ⊢ a :
𝜃 A. This mode divides the language into two fragments: 𝑃 , a flexible programming language

with unrestricted dependency between terms and types and 𝐿, a restricted proof language that

can be used to reason about both fragments in a consistent way. In a derivation of Γ ⊢ a :
𝐿 A, the

typing rules ensure that the term a belongs to the logical fragment. Otherwise, when the mode

is 𝑃 , the term can use the full generality of the programming language. For example, the typing

rule T-TYPE states that the ★ : ★ axiom is only available in the programming fragment. Terms that

type check with mode 𝐿 may not depend on code that uses this rule.

The ordering 𝐿 < 𝑃 means that logical terms can be used to compute program values, but not

vice versa. Our consistency theorem (Lemma 4.18) requires the 𝐿 fragment of our language to be

weakly normalizing. It is therefore crucial to keep nontermination out of the fragment we use for

equality proofs. On the other hand, programs that type check under the 𝐿 fragment can be used

freely in the 𝑃 fragment.

The mode 𝜌 distinguishes between the relevant and irrelevant parts of the computation. Irrelevant

arguments, annotated with 𝐼 , are not necessary at runtime and can be ignored at compile time when

checking type equivalence. The ordering between modes 𝑅 < 𝐼 means that relevant arguments

can be used to compute irrelevant values but not vice versa. Note that there is no 𝜌 on the typing

judgment itself. Implicitly, the relevance mode of a is always 𝑅 because a is the subject of the

computation.

2
A programming language, such as Haskell, includes many sources of inconsistency, such as general recursion, datatypes

with negative occurrences of the recursive type, etc. For simplicity, we include only one source of inconsistency in System

DE, but our mechanisms extend to all of these features.
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Γ ⊢ a :
𝜃 A (Typing)

T-TYPE

⊢ Γ

Γ ⊢ ★ :
𝑃 ★

T-Var

𝜃0 ≤ 𝜃 ⊢ Γ x :𝑅,𝜃0 A ∈ Γ

Γ ⊢ x :
𝜃 A

T-Pi

Γ ⊢ A :
𝜃0 ★

Γ, x :𝑅,𝜃0 A ⊢ B :
𝜃 ★

Γ ⊢ Πx :𝜌0,𝜃0 A.B :
𝜃 ★

T-Abs

Γ̃ ⊢ Πx :𝛿0 A.B :
𝜃 ★ Γ, x :𝛿0 A ⊢ b :

𝜃 B

Γ ⊢ 𝜆𝛿0x :A.b :
𝜃 Πx :𝛿0 A.B

T-App

Γ ⊢ b :
𝜃 Πx :𝛿0 A.B Γ ⊢ a :

𝛿0 A

Γ ⊢ b a𝛿0 :𝜃 B{a/x}

T-Eq

Γ ⊢ a :
𝜃0 A Γ ⊢ b :

𝜃0 A

Γ ⊢ a ≡𝜃0 b :
𝜃 ★

T-Conv

Γ ⊢ a :
𝜃 A

Γ̃; · ⊢𝜃 𝛾 : A ∼ B

Γ ⊢ a ▷ 𝛾 :
𝜃 B

T-Reify

Γ; · ⊢𝜃0 𝛾 : a ∼ b

Γ ⊢ reify𝜃0 𝛾 :
𝜃 (a ≡𝜃0 b)

Γ ⊢ a :
𝛿 A (Typing, relevance-moded)

CT-Leq

Γ ⊢ a :
𝜃 A

Γ ⊢ a :
𝑅,𝜃 A

CT-Top

Γ̃ ⊢ a :
𝜃 A

Γ ⊢ a :
𝐼 ,𝜃 A

⊢ Γ (Context formation)

T-Empty

⊢ ·

T-ConsTm

⊢ Γ Γ̃ ⊢ A :
𝜃 ★ x ∉ dom Γ

⊢ Γ, x :𝜌,𝜃 A

Fig. 3. Typing rules of System DE

The ordering between modes is reflected by the following properties of the typing judgement.
3

First, we can weaken the assumptions of variables in the context according to their modes. The

relation Γ1 ≤ Γ2 extends the ordering between 𝛿 to a pointwise ordering between contexts.

Lemma 3.1 (Narrowing
4
). If Γ2 ⊢ a :

𝜃 A, ⊢ Γ1, and Γ1 ≤ Γ2, then Γ1 ⊢ a :
𝜃 A.

Next, fragment subsumption allows logical terms to be used in programs.

Lemma 3.2 (Subsumption for 𝜃 5). If Γ ⊢ a :
𝐿 A, then Γ ⊢ a :

𝑃 A

3.2 Dependent Types and Relevance Tracking
In this section, we provide an overview of the individual typing rules in Figure 3 and highlight how

they make use of modes for relevance tracking.

3
Footnotes in this and the next section refer to the source file and name for the corresponding lemma in our companion

artifact [Liu and Weirich 2023]. The language definition itself can be found in the file lp.ott, which has been translated to

Coq using the OTT tool [Sewell et al. 2010].
4
lp_narrowing.v:typing_narrowing

5
subsumption.v:typing_subsumption
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Rule T-Var ensures that a variable x can be used as long as it has been marked relevant in the

context and when its attached termination mode 𝜃0 is less than or equal to the 𝜃 from the judgment.

Variables are introduced into the context in the rules for (dependent) function types (rule T-Pi) and

abstractions (rule T-Abs). Variables in the context that are marked irrelevant do not type check

with rule T-Var. However, as we describe below, these variables may be used in irrelevant subterms,

through the operation of resurrection described below.

A function type has the form Πx :𝛿 A.B, with the input type annotated by 𝛿 . When 𝑥 does not

appear in B, we also use the notation A
𝛿→ B. For the 𝜃 component of 𝛿 , the interaction with

dependent functions is straightforward. However, for relevance tracking, note that the relevance

component of 𝛿 in a dependent function type refers to the usage of the variable in the body of the

function itself, and not in the body of the type. For this reason, in rule T-Pi, we add the variable to

the context as 𝑅 and not 𝜌0 following Choudhury et al. [2022]. As a result, in the type polymorphic

identity function Π𝑥 : 𝐼 ,𝑃 ★ .𝑥 → 𝑥 , the abstracted type variable x can appear in the body of the type.

In contrast, rule T-Abs ensures that a function marked with mode 𝐼 is not allowed to use its

input in a relevant position because the parameter enters the context with the marked mode when

checking the body of the function. This type of relevance tracking is more precise than merely

checking whether the input variable occurs in the body of a function. To see why, consider the

following example:

𝑎 = 𝜆𝐼 ,𝜃0x :N.b x 𝑏 = 𝜆𝐼 ,𝜃0y :N.zero
In a, the irrelevant argument x appears in its body. However, the use of x is safe because it appears

in an irrelevant position as an argument to the function b, which is a constant function. Because b
does not use its argument, it can be marked as irrelevant. When x appears in a as an irrelevant

argument to another function b, the obligation of ensuring that the x is not used is shifted to the

function b.
The rule T-App precisely captures this reasoning. When we apply a function b to an argument

a with label 𝛿0, we delegate the type checking of a to the relevance-moded typing relation. The

two rules of the judgment Γ ⊢ a :
𝛿 A, shown at the bottom of Figure 3, employ a context operation

called resurrection [Mishra-Linger and Sheard 2008; Pfenning 2001] when the 𝜌 component of 𝛿 is 𝐼 .

In this case, rule CT-Top “resurrects” the context Γ into the context Γ̃ before type checking.

This operation shifts the point of view when type checking irrelevant locations in the term. Given

a context Γ, the resurrected context Γ̃ is a context that is identical to Γ but has all relevance modes

replaced with 𝑅. As a result, previously irrelevant variables are available for use by rule T-Var in

those locations.

Resurrection is also used in other rules to check irrelevant subterms, such as when checking

the function type in rule T-Abs and when checking the type A in the context well-formedness

rule T-ConsTm. This makes sense because evaluation does not depend on these parts of the term.

With the relevance-moded typing judgment, we can state a general subsumption theorem that

includes both modes and expresses the allowed dependencies.

Lemma 3.3 (Subsumption
6
). If Γ ⊢ a :

𝛿0 A and 𝛿0 ≤ 𝛿1 then Γ ⊢ a :
𝛿1 A

This lemma depends on the following property, which asserts that relevant terms can also be

used in irrelevant contexts.

Lemma 3.4 (Resurrection
7
). If Γ ⊢ a :

𝜃 A then Γ̃ ⊢ a :
𝜃 A

We can further show that our type system has the following regularity property: the type of

term checks in the same fragment but uses a resurrected context.

6
subsumption.v:typing_subsumption

7
lp_narrowing.v:typing_meet_ctx_l

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 210. Publication date: August 2023.

subsumption.v:typing_subsumption
lp_narrowing.v:typing_meet_ctx_l


210:12 Yiyun Liu and Stephanie Weirich

Γ; Γ0 ⊢𝜃 𝛾 : a ∼ b (Equality proofs)

E-Reflect

𝜃0 ≤ 𝜃 ⊢ Γ, Γ0 Γ ⊢ a0 :𝐿 a ≡𝜃0 b Γ ⊢ a :
𝜃 A Γ ⊢ b :

𝜃 A

Γ; Γ0 ⊢𝜃 reflect a0 : a ∼ b

E-PiCong

Γ; Γ0 ⊢𝜃0 𝛾1 : A1 ∼ A2 Γ; Γ0, x :𝑅,𝜃0 A1 ⊢𝜃 𝛾2 : B1 ∼ B2
Γ, Γ0 ⊢ Πx :𝜌0,𝜃0 A1 .B1 :𝜃 ★ Γ, Γ0 ⊢ Πx :𝜌0,𝜃0 A1.B2 :𝜃 ★ B3 = B2{x ▷ sym𝛾1/x}

Γ; Γ0 ⊢𝜃 Πx :𝜌0,𝜃0 𝛾1 .𝛾2 : Πx :𝜌0,𝜃0 A1.B1 ∼ Πx :𝜌0,𝜃0 A2.B3

E-AbsCong

Γ̃, Γ0 ⊢ A :
𝜃0 ★ Γ; Γ0, x :𝜌0,𝜃0 A ⊢𝜃 𝛾2 : a1 ∼ a2 Γ, Γ0 ⊢ (𝜆𝜌0,𝜃0x :A.a2) :𝜃 B

Γ; Γ0 ⊢𝜃 𝜆𝜌0,𝜃0x :A.𝛾2 : 𝜆𝜌0,𝜃0x :A.a1 ∼ 𝜆𝜌0,𝜃0x :A.a2

E-AppCong

Γ; Γ0 ⊢𝜃 𝛾1 : a1 ∼ a2
Γ; Γ0 ⊢𝜃0 𝛾2 : b1 ∼ b2 Γ, Γ0 ⊢ a1 b1𝑅,𝜃0 :𝜃 A Γ, Γ0 ⊢ a2 b2𝑅,𝜃0 :𝜃 B Γ̃, Γ0; · ⊢𝜃 𝛾 : A ∼ B

Γ; Γ0 ⊢𝜃 𝛾1 𝛾+2 ▷ 𝛾 : (a1 b1𝑅,𝜃0 ) ▷ 𝛾 ∼ a2 b2𝑅,𝜃0

E-AppCongIrrel

Γ; Γ0 ⊢𝜃 𝛾1 : a1 ∼ a2 Γ̃, Γ0 ⊢ b1 :𝜃0 A
Γ̃, Γ0 ⊢ b2 :𝜃0 A Γ, Γ0 ⊢ a1 b1𝐼 ,𝜃0 :𝜃 B1 Γ, Γ0 ⊢ a2 b2𝐼 ,𝜃0 :𝜃 B2 Γ̃, Γ0; · ⊢𝜃 𝛾 : B1 ∼ B2

Γ; Γ0 ⊢𝜃 𝛾1 (b1 b2)− ▷ 𝛾 : (a1 b1𝐼 ,𝜃0 ) ▷ 𝛾 ∼ a2 b2𝐼 ,𝜃0

Fig. 4. Coercion proofs (selected rules)

Lemma 3.5 (Regularity
8
). If Γ ⊢ a :

𝜃 A then Γ̃ ⊢ A :
𝜃 ★ or A = ★.

The relevance tracking in System DE applies to the term level only; some variables may be marked

irrelevant in the context when checking a, but may be used in relevant positions in the type A.
Therefore resurrection is required to ensure that these variables are accessible. On the other hand,

the termination mode 𝜃 must stay the same for type A.

3.3 Decidable Type Checking through Logical Coercion Proofs
Type checking in System DE is decidable and straightforward, through the use of typing annotations

and explicit coercion proofs, notated 𝛾 , and inspired by System FC [Sulzmann et al. 2007] and its

dependently-typed variant System DC [Weirich et al. 2017]. One difficulty of including potentially

nonterminating terms in types is that determiningwhether they are equal is not decidable. Therefore,

like System FC, we maintain decidability of type checking by requiring evidence 𝛾 in rule T-Conv.

This evidence includes a trace of execution that can be checked and need not be inferred. Because

of this explicit evidence, System DE admits the unique typing property.

Lemma 3.6 (Uniqe typing
9
). If Γ ⊢ a :

𝜃 A and Γ ⊢ a :
𝜃 B, then A = B.

8
regularity.v:typing_regularity

9
typing_unique.v:typing_unique
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Coercion proofs are checked by the judgment of the form Γ; Γ0 ⊢𝜃 𝛾 : a ∼ b, partially shown in

Figure 4. This judgment roughly corresponds to the reflexive, symmetric, transitive, and compatible

closure of the reduction relations we will see in Section 3.4 and includes reflected proofs from

the logical fragment (rule E-Reflect). The termination mode 𝜃 on this judgement refers to the

fragments for a and b (coercion proofs themselves are annotations for the type checker and are

never evaluated). The complete set of rules appears in Appendix A.2 and many rules are similar to

analogous rules in Systems FC and DC.

However, a significant difference between System DE and prior systems is that coercion proofs

can contain logical terms and are not isolated from other parts of the computation. This means that

System DE needs only one form of abstraction: modes identify which terms can be used as evidence

not syntax. The typing rule T-Reify reifies a coercion proof 𝛾 as a witness for the equality type

A ≡𝜃 B. These values are first class, and can be manipulated using the features of the programming

language.

Conversely, rule E-Reflect allows logical terms of the equality type to be reflected back as

coercions. In the simplest case, these reflected terms may be proofs that were previously reified, or

they may be variables of the appropriate type. They may also be the result of any computation

in the logical language that produces a value of the equivalence type. As shown in Section 2, this

design significantly increases the expressiveness of coercions compared to System DC.

To see how the reify and reflect constructs from the surface language are elaborated into

System DE, consider the following proof that 𝑦 + 0 = 𝑦 for all natural numbers 𝑦.

plusNZ ::𝐿 foreach (y ::𝐿 Nat) -> y + Z :=: y
plusNZ [] = reify
plusNZ (S y) = reflect z in reify
where z :: y + Z :=: y

z = plusNZ y

As usual, + is defined by recursion over its first argument. Therefore, the structure of plusNZ is
almost identical to that of appendNilEq.

The elaborated System DE uses the terminating recursor over natural numbers that we describe

in Section 3.5. This logical term encodes an inductive proof and requires the base case a1 and
inductive step a2 shown below.

a1 : zero + zero ≡𝐿 zero a2 : (y + zero ≡𝐿 y) → (succ y + zero ≡𝐿 succ y)
a1 = reify𝐿 𝛾1 a2 = 𝜆z.reify𝐿 (. . . reflect z . . .)

The coercion proof 𝛾1 in the base case a1 witnesses the explicit reduction sequence from zero+ zero
to zero and can be automatically constructed by the type checker. The induction case, a2, is more

interesting. This term takes the inductive hypothesis (a variable z of type y +zero ≡𝐿 y) and returns
a proof of type succ y + zero ≡𝐿 succ y. In this case, the left hand side and right hand side are not

beta-equivalent. Instead, the reflected input z is part of a larger (elided) coercion that witnesses the

equality between succ y + zero and succ y. This coercion can also be automatically constructed by

the type checker.

The “reflect. . .in. . . ” form from the surface language makes a logical equality proof available

in a specific scope, instructing the type inferencer to reflect that proof when constructing coercion

evidence. In the absence of reflected equality proofs, coercion proofs may only use reduction rule

and congruence rules. By reflecting logical terms, such as z, the user can guide the type inferencer

to more sophisticated reasoning.

There are limits on what logical terms can be reflected into coercion proofs—these terms must

not refer to variables that were introduced into the context as part of congruence rules. For this
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reason, the judgment maintains two separate contexts: Γ and Γ0. The local context Γ0 is populated
with variables introduced through congruence rules that involve binders such as rule E-AbsCong

and rule E-PiCong. In rule E-Reflect, the reflected term must be typeable using the global context

Γ only. In the earlier example, we can use reflect z inside the coercion proof of a2 because the
variable z is introduced into the global context through rule T-Abs. The reason for this restriction

comes from our consistency proof, which we discuss in Section 4.2.

Another significant difference between System DC and System DE’s coercion judgments is

that the equivalence rules and operational semantics are stated without the use of an erasure

operation. Instead, this system includes two congruence rules for applications. When the argument

is relevant, rule E-AppCong requires evidence that the arguments are equal. On the other hand, in

applications that involve irrelevant arguments, rule E-AppCongIrrel only requires the arguments

to be well-formed and the overall types to be equal.

Unlike System DC, the typed equivalence relation is homogeneous. The two terms that we want

to equate must have the exactly same type in the 𝜃 fragment. In other words, the relation admits

following regularity property:

Lemma 3.7 (DefEq regularity
10
). If Γ; Γ0 ⊢𝜃 𝛾 : a ∼ b, then there exists some A such that

Γ, Γ0 ⊢ a :
𝜃 A and Γ, Γ0 ⊢ b :

𝜃 A.

Above, we use Γ, Γ0 to indicate the concatenation of the contexts Γ and Γ0.
Making this equality homogeneous makes it easy to work with as a congruence: at any point

we can substitute related terms because the two terms have the same type. However, there is a

cost: combining homogeneous equality with the explicit conversion rule incurs a small bit of extra

bookkeeping in constructing proofs to make sure the terms on both sides share the same type. In

rule E-AppCong, in addition to showing the equivalence between the functions a1 and a2 and their

respective arguments b1 and b2, it is necessary to supply an extra coercion proof 𝛾 that witnesses

the equality between the types of a1 b1𝑅,𝜃0 and a2 b2𝑅,𝜃0 . Because System DE has dependent

function types, changing the input can change the resulting type of the application. A similar

asymmetry appears in rule E-PiCong where the quantified variable must be coerced. In contrast,

rule E-AbsCong may require the domain types to be identical without loss of expressiveness,

because an administrative reduction (rule CR-AbsPush, Figure 5) can be used instead.

3.4 Operational Semantics of System DE
Since System DE requires explicit coercion objects, we need to decide what to do with the coercions

when we run into them during reduction. It is convenient to divide our reduction relation into

two separate relations—an administrative reduction relation that is used exclusively for shuffling

around the coercions and a computational reduction relation that performs more conventional

reductions. Figure 5 shows the definitions of the two relations.

Before understanding how the reduction relation works, we need to first look at how values and
covalues are defined in our language (see grammar at top of Figure 5). The definition of a value is

standard for a call-by-name language with the exception that natural numbers are strict. System

DE also has the concept of a coerced value or covalue, a term that consists of a value or a successor

form nested in an arbitrary (possibly zero) number of coercions. Intuitively, a covalue is a term

that is not necessarily in head form but is equal to a value once the coercions are erased.

In an application, the computational reduction relation reduces the argument of an application

first to a covalue using rule R-App. Then in rule R-AppAbs, it switches to the administrative relation

to “push” any coercions surrounding the abstraction inside, exposing the lambda at the top level

10
regularity.v:defeq_regularity
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values
v ::= ★ | Πx :𝛿 A.B a ≡𝜃 b | N types

| 𝜆𝛿x :A.a | reify𝜃 𝛾 functions and reified coercions

| zero | succ v naturals

covalues
c ::= v | c ▷ 𝛾 | succ c

Γ ⊢𝜃 a { b (Computational reduction)

R-AppAbs

a is a covalue
Γ ⊢𝜃 a −⇀∗ 𝜆𝛿0x :A.a1

Γ ⊢𝜃 a b𝛿0 { a1{b/x}

R-App

Γ ⊢𝜃 a1 { a2

Γ ⊢𝜃 a1 b𝛿0 { a2 b𝛿0

R-Conv

Γ ⊢𝜃 a1 { a2

Γ ⊢𝜃 a1 ▷ 𝛾 { a2 ▷ 𝛾

Γ ⊢𝜃 a −⇀ b (Administrative reduction)

CR-AbsPush

Γ ⊢ (𝜆𝛿0x :A1.a1) ▷ 𝛾 :
𝜃 A 𝜃0 ≤ 𝜃 Γ̃; · ⊢𝜃0 𝛾 : (Πx :𝛿0 A1 .B1) ∼ (Πx :𝛿0 A2 .B2)

a2 = a1{x ▷ sym (pifst𝜃0𝛾)/x} 𝛾2 = 𝛾𝜃0@(reflex x) ▷ (sym (pifst𝜃0𝛾))
Γ ⊢𝜃 (𝜆𝛿0x :A1 .a1) ▷ 𝛾 −⇀ 𝜆𝛿0x :A2 .(a2 ▷ 𝛾2)

CR-ConvRefl

Γ̃; · ⊢𝜃 𝛾 : A ∼ A

Γ ⊢𝜃 a ▷ 𝛾 −⇀ a

CR-ConvCong

Γ ⊢𝜃 a −⇀ b

Γ ⊢𝜃 a ▷ 𝛾 −⇀ b ▷ 𝛾

CR-Combine

Γ ⊢𝜃 (a ▷ 𝛾1) ▷ 𝛾2 −⇀ a ▷ (𝛾1;𝛾2)

Fig. 5. Operational semantics

of the term for a 𝛽-reduction. We use the notation Γ ⊢𝜃 a −⇀∗ b for zero or more administrative

reductions.

As an example of an evaluation, consider the following term:

((𝜆𝑅,𝜃0x :N.x) ▷ 𝛾) zero
where 𝛾 is defined as a trivial reflexivity proof reflex (Πx :𝑅,𝜃0 N.N). The term is in the form of a

covalue applied to an argument zero. To take a step, we apply rule R-AppAbs, which first applies

one step of the rule CR-AbsPush to push the coercion object inside, obtaining the following lambda

term:

𝜆𝑅,𝜃0x :N.((x ▷ (sym (pifst𝜃0𝛾))) ▷ (𝛾𝜃0@(reflex x) ▷ (sym (pifst𝜃0𝛾))))
With the lambda term now available, we can finally substitute in the argument zero and obtain the

following covalue as the result of the computational reduction:

(zero ▷ (sym (pifst𝜃0𝛾))) ▷ (𝛾𝜃0@(reflex★) ▷ (sym (pifst𝜃0𝛾)))
It is possible to apply a few more steps of the administrative reduction relation to reduce the

resulting term to zero. However, we specifically design the system such that the reduction relation

never takes a step when the term is already a covalue. Instead, we delay the reduction of a covalue

into a value until we need the term to be in the form of a value before we can make progress.

This is not out of consideration of performance. Administrative reduction rules merely shuffle
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Γ ⊢ a :
𝜃 A (Typing)

T-Nat

⊢ Γ

Γ ⊢ N :
𝜃 ★

T-Zero

⊢ Γ

Γ ⊢ zero :
𝜃 N

T-Succ

Γ ⊢ a :
𝜃 N

Γ ⊢ succ a :
𝜃 N

T-Ind

Γ̃ ⊢ Πx :𝑅,𝐿N.A :
𝐿 ★

Γ ⊢ a1 :𝐿 N
Γ ⊢ a2 :𝐿 A{zero/x}

Γ, y :𝑅,𝐿N ⊢ a3 :𝐿 A{y/x} 𝑅,𝐿→ A{succ y/x}
Γ ⊢ ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3) :𝜃 A{a1/x}

Fig. 6. Typing rules for natural numbers

around the coercion objects so our term remains well-typed when we perform the more interesting

reduction rules such as beta reduction of lambda terms and induction on natural numbers. This

way of structuring the reduction relations not only helps us express our type soundness property

(Theorem 4.22), but also makes it easier to extend our language to support call-by-value functions

(Section 5).

To show that both coercions and irrelevant terms can be safely erased, we prove the forward

simulation property between the computational reduction semantics of SystemDE and the reduction

semantics of a simple, untyped, and unannotated language. The erasure operation
11
removes all

modes and coercions and replaces all irrelevant arguments with a placeholder term (written □).
The following property states that the administrative reduction relation preserves the erased form.

Lemma 3.8 (Simulation (Co)
12
). If Γ ⊢𝜃 a −⇀ b, then |a| = |b|.

We can then derive the lock-step simulation property between the System DE terms and an

operational semantics for erased terms
13
.

Lemma 3.9 (Simulation
14
). If Γ ⊢𝜃 a { b, then |a| { |b|.

We omit the definition of the reduction relation for the erased language since it directly corre-

sponds to the reduction rules of System DE except for the lack of annotations and administrative

steps for pushing coercions. Lemma 3.9 holds only because we distinguish between the rules that

perform “interesting” reductions and the rules for shuffling around coercions. This property justifies

our decision to treat terms appearing in coercion proofs as irrelevant; coercions appear in terms

and even interact with the typed reduction relation, but they do not affect the behavior of the

program or even lead to additional evaluation steps after erasure.

3.5 Natural Number Induction
Figure 6 includes the typing rules for natural numbers. The term indA a b1 (y.b2) is a terminating

recursor over the natural number argument a, using b1 when it is zero and calling itself recursively

in the successor case. It is annotated by the result type A. The typing rule allows it to be used as in

an inductive proof, refining the result type in the zero and successor cases. For simplicity, this term

is limited to the logical fragment as its primary purpose is for inductive proofs.

Rule R-Ind, the congruence reduction rule for the induction form, evaluates an induction form

into a coerced term.

11
Appendix B.1

12
simulation.v:cored_simulation

13
Appendix B.2

14
simulation.v:red_simulation
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R-Ind

Γ ⊢𝐿 a1 { b1
Γ ⊢ ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3) :𝜃 B0
Γ ⊢ ind(Πx:𝑅,𝐿N.A) b1 a2 (y.a3) :𝜃 B1

Γ̃; · ⊢𝜃 𝛾 : B1 ∼ B0

Γ ⊢𝜃 (ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3)) { (ind(Πx:𝑅,𝐿N.A) b1 a2 (y.a3)) ▷ 𝛾
The coercion proof is necessary for the preservation lemma to hold since the type of the induction

form is dependent on the scrutinee. In rule T-Ind, when a1 steps into b1, the type of the induction
form also changes from A{a1/x} to A{b1/x}. The coercion proof 𝛾 serves as a witness between

those two types.

The following admissible rule
15
shows that given Γ ⊢𝐿 a1 { b1, it is always possible to construct

some 𝛾 such that Γ; · ⊢𝜃 𝛾 : A{b1/x} ∼ A{a1/x} in order to step a term through rule R-Ind.

R-IndAlt

Γ ⊢𝐿 a1 { b1 Γ ⊢ ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3) :𝜃 A{a1/y}
Γ ⊢ ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3) {𝜃 (ind(Πx:𝑅,𝐿N.A) b1 a2 (y.a3)) ▷ 𝛾

4 TYPE SOUNDNESS
We have proven, in Coq, that this language is type sound using the preservation and progress

lemmas. Of these two results, preservation is more similar to previous work [Choudhury et al.

2022; Sulzmann et al. 2007; Weirich et al. 2017], so we provide only a short proof sketch in the

next subsection. However, consistency (needed for the progress theorem) requires significant new

structure due to the addition of equality reflection.

4.1 Structural Lemmas and Preservation
This system supports a computational weakening and substitution properties.

Lemma 4.1 (Weakening
16
). If Γ ⊢ a :

𝜃 A and ⊢ Γ, x :𝛿0 A0, then Γ, x :𝛿0 A0 ⊢ a :
𝜃 A.

The rule T-Var allows a variable at level 𝐿 to be used in a 𝑃 context. Therefore, the proof of

substitution depends on the the subsumption property mentioned earlier (Lemma 3.3).

Lemma 4.2 (Substitution
17
). If Γ, x :𝛿0 B ⊢ a :

𝜃 A and Γ ⊢ b :
𝛿0 B, then Γ ⊢ a{b/x} :𝜃 A{b/x}.

Preservation for administrative reduction and computational reduction follow from substitution.

Lemma 4.3 (Preservation (Co)
18
). If Γ ⊢ a :

𝜃 A and Γ ⊢𝜃 a −⇀ b, then Γ ⊢ b :
𝜃 A.

Lemma 4.4 (Preservation
19
). If Γ ⊢ a :

𝜃 A and Γ ⊢𝜃 a { b, then Γ ⊢ b :
𝜃 A.

4.2 Consistency
To prove progress (Theorem 4.22), we must first show the consistency of the equality judgment,

which states that two definitionally equal terms under the empty context cannot have distinct head

forms (Lemma 4.18). In pure type systems, where the equality judgment used in the conversion

rule is beta-equivalence, the consistency of the equality judgment can be proven through syntactic

means as a corollary of the Church-Rosser property; if two terms have conflicting head forms,

then it is impossible for them to reduce to the same term because beta reduction preserves head

forms. Choudhury et al. [2022] adapted the above argument to take into account compile-time

15
sn_proof.v:ind_cong_intro

16
lp_weak.v:typing_weakening

17
lp_subst.v:typing_substc_nil

18
preservation.v:preservation_cored

19
preservation.v:preservation_red
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Ω ⊢ a ⇒ b Parallel reduction Figure 8 Appendix C.1

Ω ⊢𝜌 a ⇒ b Parallel reduction, relevance-moded Figure 8 Appendix C.2

Ω ⊢ a ⇒+ b Multistep parallel reduction Definition 4.5 Appendix C.3

Ω ⊢ a1 ⇔ a2 Joinability Definition 4.6 Appendix C.4

V[[A]]𝜃
𝜉

Logical relation for covalues Figure 9

C[[A]]𝜃
𝜉

Logical relation for terms Figure 9

⊢𝐿 A Logical types Figure 10

𝜉 ⊨ Γ Valuation well-formedness Figure 11

Fig. 7. Summary of notation and judgement forms used in consistency proof

Ω ⊢ a ⇒ b (Parallel reduction (excerpt))

P-Var

x :𝑅 ∈ Ω

Ω ⊢ x ⇒ x

P-Type

Ω ⊢ ★⇒ ★

P-Reify

Ω ⊢ reify𝜃0 𝛾1 ⇒ reify𝜃0 𝛾2

P-AppCong

Ω ⊢ a1 ⇒ a2
Ω ⊢𝜌 b1 ⇒ b2

Ω ⊢ a1 b1𝜌,𝜃 ⇒ a2 b2𝜌,𝜃

P-AppAbs

Ω ⊢ a1 ⇒ 𝜆𝜌,𝜃x :A.a2
Ω ⊢𝜌 b1 ⇒ b2

Ω ⊢ a1 b1𝜌,𝜃 ⇒ a2{b2/x}

P-Conv

Ω ⊢ a1 ⇒ a2
Ω ⊢ a1 ▷ 𝛾 ⇒ a2

Ω ⊢𝜌 a ⇒ b (Parallel reduction, relevance-moded)
CP-Leq

Ω ⊢ a ⇒ b

Ω ⊢𝑅 a ⇒ b

CP-Nleq

Ω ⊢𝐼 a ⇒ b

Fig. 8. Parallel reduction (selected rules)

irrelevance and inspired our consistency proof for System DE. However, due to rule E-Reflect, the

consistency proof of DE also requires the use of a logical relation because the consistency of the

equality judgment relies on the weak normalization of the 𝐿 fragment.

First, we introduce the definitions that are necessary to state the logical relation. These definitions

are summarized in Figure 7. The mode context Ω keeps track of the relevance label associated with

each variable. The joinability relation is defined in terms of the parallel reduction relation; two

terms are joinable as long as there exists a common term that they both reduce to through the

transitive closure of the parallel reduction relation (Figure 8).

Definition 4.5 (Multistep parallel reduction). The relation Ω ⊢ a ⇒+ b denotes the transitive

closure of Ω ⊢ a ⇒ b.

Definition 4.6 (Joinable terms). Two terms are joinable, written Ω ⊢ a1 ⇔ a2, when there exists

some b, such that Ω ⊢ a1 ⇒+ b and Ω ⊢ a2 ⇒+ b.

One can see System DE’s parallel reduction (Figure 8) as an ordinary parallel reduction relation

extended with the concept of irrelevance and erasure of coercions. Baking all these concepts into
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V[[N]]𝐿
𝜉
= {c | · ⊢ c :𝐿 N, ∃v, · ⊢𝐿 c −⇀∗ v}

V[[Πx :𝜌0,𝜃0 A.B]]𝐿
𝜉
=

{
c
��� · ⊢ c :𝐿 Πx :𝜌0,𝜃0 𝜉 (A).𝜉 (B), ∃a, · ⊢𝐿 c −⇀∗ 𝜆𝜌0,𝜃0x :𝜉 (A).a,
∀b ∈ C[[A]]𝜃0

𝜉
, a{b/x} ∈ C[[B]]𝐿

𝜉,x ↦→b

}
V[[b1 ≡𝜃0 b2]]𝐿𝜉 = {c | · ⊢ c :𝐿 𝜉 (b1) ≡𝜃0 𝜉 (b2), · ⊢ 𝜉 (b1) ⇔ 𝜉 (b2)}

V[[★]]𝐿
𝜉
= {a | · ⊢ a :

𝐿 ★}

V[[A]]𝑃
𝜉
= {a | · ⊢ a :

𝑃 𝜉 (A)}

C[[A]]𝐿
𝜉
= {a | · ⊢ a :

𝐿 𝜉 (A), ∃𝑐 ∈ V[[A]]𝐿
𝜉
, · ⊢𝐿 a {∗ c}

C[[A]]𝑃
𝜉
= {a | · ⊢ a :

𝑃 𝜉 (A)}

Fig. 9. Logical relation21

the same relation helps us simplify the metatheoretic proofs. Relevance-moded parallel reduction,

in the same figure, is able to take shortcuts related to irrelevance, in a manner similar to the equality

judgement. In rule P-Reify, because coercion proofs are not relevant, any proof 𝛾1 can step to any

other proof 𝛾2. In rule P-AppCong, we delegate the reduction of the argument to the relevance-

moded reduction relation. When the argument is annotated with 𝐼 , we fall into rule CP-Nleq and

are allowed to convert a term to an arbitrary term because an irrelevant argument should not affect

the result of the evaluation. Consider the following term:

𝜆𝐼 ,𝑃x :★.x

The function marks its argument x as irrelevant, but it still uses x in its body by simply returning it.

Allowing such functions in the reduction relation would break the confluence property of parallel

reduction as seen in the following example:

(𝜆𝐼 ,𝑃x :★.x) N⇒ (𝜆𝐼 ,𝑃x :★.x)★⇒ ★

(𝜆𝐼 ,𝑃x :★.x) N⇒ N
The rule P-Var correctly rejects the function since the irrelevant variable x is used in a relevant

context, ruling out the malformed term from earlier.

The joinability relation satisfies the following consistency property. Below, the erased context

|Γ0 | is obtained from Γ0 by removing 𝜃 and type annotations while keeping only the relevance mode

associated with each variable.

Lemma 4.7 (Joinability consistency).
20 If |Γ | ⊢ a ⇔ b, then a and b cannot have conflicting

head forms.

When either a or b is not in head form, Lemma 4.7 is vacuously true. When a and b are both in

head forms, the conclusion follows from the fact that parallel reduction preserves head forms.

Figure 9 shows the full definition of our logical relation. The logical relation takes the general

form ofV[[A]]𝜃
𝜉
and C[[A]]𝜃

𝜉
. The former represents the covalue interpretation and the latter the

term interpretation. The mode 𝜃 specifies the fragment of the type that we are interpreting. Because

rule E-Reflect only allows reflection of logical terms, it is sufficient to include a catch-all case

when 𝜃 = 𝑃 so every syntactically well-typed 𝑃 term trivially belongs to the set. The covalue

interpretation is defined to include not just values, but also coerced values. In the function case,

for example, we allow c to be a covalue that reduces to a lambda expression through the coercion

20
par.v:Join_Consistent

21
sn_def.v:SN
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⊢𝐿 A (Logical types)
LTy-PiLogic

⊢𝐿 A1 ⊢𝐿 B1
⊢𝐿 Πx :𝜌0,𝐿A1.B1

LTy-PiProg

⊢𝐿 B1
⊢𝐿 Πx :𝜌0,𝑃 A1.B1

LTy-Eq

⊢𝐿 a ≡𝜃 b

LTy-Nat

⊢𝐿 N

Fig. 10. Types free of computation and polymorphism

𝜉 ⊨ Γ (Valuation well-formedness)

VWff-Empty

· ⊨ ·

VWff-Cons

𝜉 ⊨ Γ a ∈ C[[A]]𝜃0
𝜉

𝜉, x ↦→ a ⊨ Γ, x :𝜌0,𝜃0 A

Fig. 11. Well-formedness judgment for valuations

reduction relation. This extra step of administrative reduction is necessary so the logical relation

matches our definition of our beta reduction rule as seen in rule R-AppAbs.

The logical relation admits the following formation properties. Every term in the logical relation

must also be syntactically well-typed.

Lemma 4.8 (Logical Relation Typing).
22 If a ∈ C[[A]]𝜃

𝜉
, then · ⊢ a :

𝜃 𝜉 (A).

Lemma 4.8 implies the following subsumption property about the logical relation, mirroring

Lemma 3.3.

Lemma 4.9 (Logical Relation Subsumption).
23 If a ∈ C[[A]]𝐿

𝜉
, then a ∈ C[[A]]𝑃

𝜉
.

The definition of the logical relation is partial when 𝜃 is set to 𝐿. V[[A]]𝐿
𝜉
and C[[A]]𝐿

𝜉
are

undefined when A is a variable or an application. The typing rules of System DE guarantees that

such a scenario will never appear for well-formed types. The exclusion of the ★ : ★ axiom forces

variables to only appear behind equality types in an 𝐿 type. For the convenience of specifying and

proving certain lemmas about the logical relation, we define the predicate ⊢𝐿 A (see Figure 10) that

characterizes logical types that are free of polymorphism and computation at the type level. We can

then say that the logical relation is defined for a type A from the 𝐿 fragment as long as ⊢𝐿 A holds.

The valuation 𝜉 is a delayed substitution from variables to terms that may be applied with the

notation 𝜉 (A). This mapping is needed in the definition of the logical relation to ensure that the

definition is well-founded. The following lemma shows that eagerly performing the substitution

over the codomain type in the function case gives us the exact same interpretation as our normal

definition:

Lemma 4.10 (Substitution for logical relation
24
). If ⊢𝐿 A, then for every term a, a ∈ C[[A]]𝐿

𝜉

if and only if a ∈ C[[𝜉 (A)]]𝐿· .

The well-formedness judgment 𝜉 ⊨ Γ for valuations can be found in Figure 11. Similar to

the context well-formedness judgment, the well-formedness judgment for valuation satisfies the

following narrowing property:

22
sn_proof.v:SN_typing

23
sn_proof.v:SN_subsumption

24
sn_proof.v:SN_subst_valuation_iff
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Lemma 4.11 (Narrowing (Valuation)
25
). If 𝜉 ⊨ Γ, then 𝜉 ⊨ Γ̃.

The following lemma is the semantic counterpart of rule T-Conv:

Lemma 4.12 (Semantic conversion
26
). If ⊢𝐿 A1, ⊢𝐿 A2, and 𝜉 ⊨ Γ, given a coercion proof

·; · ⊢𝐿 𝛾 : 𝜉 (A1) ∼ 𝜉 (A2) and · ⊢ 𝜉 (A1) ⇔ 𝜉 (A2), for every term a ∈ C[[A1]]𝐿𝜉 , we must also have
a ▷ 𝛾 ∈ C[[A2]]𝐿𝜉 .

Lemma 4.12 is useful not only for the rule T-Conv case of the fundamental theorem (see The-

orem 4.15 below), but it is also useful for the rule T-Ind case. Recall that rule R-Ind always

evaluates an induction form to a coerced term. Given Γ ⊢𝐿 a {∗ v, we cannot conclude that

Γ ⊢𝜃 indA a b1 (x .b2) {∗ indA v b1 (x .b2) because of the coercion proofs produced during the

repeated application of the rule R-Ind. Instead, what we actually end up with is the following term:

indA v b1 (x .b2) ▷ 𝛾1 ▷ 𝛾2 . . . ▷ 𝛾𝑛
In the rule T-Ind case of the fundamental theorem, we need to repeatedly apply Lemma 4.12 to show

that it suffices to show that indA v b1 (x .b2) is in the interpreted set to derive that indA a b1 (x .b2)
is in the interpreted set.

Unlike the other lemmas, which can be proven through structural induction over derivations or

terms, Lemma 4.12 requires natural number induction based on the following metric:

𝜅 (Πx :𝜌0,𝑃 A.B) = 1 + 𝜅 (B)
𝜅 (Πx :𝜌0,𝐿A.B) = 1 + 𝜅 (A) + 𝜅 (B)

𝜅 (A) = 1, otherwise

We cannot directly prove Lemma 4.12 by induction over types because the function type is con-

travariant in its argument type. The directions in which we cast the codomain and the domain of a

function are opposite to each other. The termination metric allows us to strengthen the inductive

hypothesis and cast from either side.

Before we state the fundamental theorems, we generalize the interpretation of types and equalities

to include terms or coercion proofs that are open.

Definition 4.13. Semantic typing
27

Γ ⊨ a :
𝜃 A ⇐⇒ ∀𝜉, 𝜉 ⊨ Γ, 𝜉 (a) ∈ C[[A]]𝜃

𝜉

Definition 4.14. Semantic equality
28

Γ; Γ0 ⊨ a ∼𝜃 b ⇐⇒ ∀𝜉, 𝜉 ⊨ Γ, |Γ0 | ⊢ 𝜉 (a) ⇔ 𝜉 (b)

We prove the fundamental theorems for both typing and equality by mutual induction over the

typing judgment and the equality judgment.

Theorem 4.15 (Fundamental theorem: typing
29
). If Γ ⊢ a :

𝜃 A, then Γ ⊨ a :
𝜃 A.

Theorem 4.16 (Fundamental theorem: eqality
30
). If Γ; Γ0 ⊢𝜃 𝛾 : a ∼ b, then Γ; Γ0 ⊨ a ∼𝜃 b.

In the interpretation of the equality judgment (Definition 4.14), the valuation 𝜉 closes over the

global context Γ but leaves the local context Γ0 open. The distinct treatment of Γ and Γ0 is necessary
for Theorem 4.16 to hold. To see why, let us consider the following equality:

(𝜆𝛿0x :A1.a1) ≡𝜃 (𝜆𝛿0x :A1.a2)
25

sn_proof.v:valuation_meet_ctx_l
26

sn_proof.v:conv_sn_iff
27

sn_def.v:SemTyping
28

sn_proof.v:SemDefEq

29
sn_proof.v:typing_implies_semtyping

30
sn_proof.v:defeq_implies_semdefeq

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 210. Publication date: August 2023.

sn_proof.v:valuation_meet_ctx_l
sn_proof.v:conv_sn_iff
sn_def.v:SemTyping
sn_proof.v:SemDefEq
sn_proof.v:typing_implies_semtyping
sn_proof.v:defeq_implies_semdefeq


210:22 Yiyun Liu and Stephanie Weirich

To prove that this equality holds, we use the rule E-AbsCong to show that a1 ≡𝜃 a2 after we
extend the context Γ0 with x. If we used 𝜉 to close over both Γ and Γ0, the inductive hypothesis
would become the following statement: for every closed term b of type A1 that is in the logical

relation, a1{b1/x} and a2{b2/x} are joinable. Our goal then is to show that the two lambda terms

𝜆𝛿0x :A1.a1 and 𝜆𝛿0x :A1.a2 are also joinable. In the case where 𝛿0 contains a logical label and A1 is

an uninhabited type such as N ≡𝑃 ★, we end up with a vacuously true inductive hypothesis since it

is impossible to construct a closed term of type A1, assuming our system is consistent. This makes it

impossible to finish the proof that the lambda terms are joinable because there is a chance that we

do not know anything about the form of a1 and a2. On the other hand, if we limit the interpretation

of the context to exclude Γ0, our inductive hypothesis takes the form that a1 and a2 are joinable
when x remains unsubstituted, allowing us to complete our proof.

By instantiating Γ and Γ0 to the empty context, we derive the following corollary from Theo-

rem 4.16.

Lemma 4.17 (DefEq Joinability).
31 If ·; · ⊢𝜃 𝛾 : a ∼ b, then · ⊢ a ⇔ b.

Finally, by composing Lemma 4.17 and Lemma 4.7, we prove the consistency of the equality

judgment.

Lemma 4.18 (DefEq consistency
32
). If ·; · ⊢𝜃 𝛾 : a ∼ b, then a and b cannot have conflicting head

forms.

Lemma 4.17 shows that two closed terms related by the typed equality judgment must also be

related under the untyped joinability relation. One might wonder whether the other direction holds:

if · ⊢ a ⇔ b where a and b can be assigned the same type, is there always some 𝛾 that witnesses the

equality between a and b? We have not proven this property for System DE because this direction

is not needed for the type soundness proof. However, the relationship between a typed equality

judgment and untyped beta-equivalence has been previously studied in Adams [2006] and Siles

and Herbelin [2012]. The latter proves the equivalence between two pure type systems that use

untyped beta-equivalence and typed judgemental equality in their respective conversion rules. The

easy direction, showing that typed equality implies untyped equality, is related to Lemma 4.17.

However, because our untyped equality is joinability instead of untyped beta-equivalence, our

proof in this direction is both more difficult and more informative. Showing the reverse of this

lemma would require extending Siles and Herbelin’s proof technique to include equality reflection.

4.3 Progress
Recall that the computational reduction relation depends on the administrative reduction relation

in its definition. As a result, we need to first show properties about the administrative reduction

relation before we can prove progress for the computational reduction relation.

The following property says that we can reduce a term nested inside multiple layers of coercions

into a term with at most one layer of coercion by repeatedly applying rule CR-Combine.

Lemma 4.19 (Progress-Semi (Co)
33
). If Γ ⊢ c :𝜃 A, then either c is not a coerced term or there exists

some c0 and coercion proof 𝛾 such that Γ ⊢𝜃 c −⇀∗ c0 ▷ 𝛾 where c0 is not a coerced term.

When a well-typed application takes the form c b, the following property allows us to take a

step through rule R-AppAbs.

Lemma 4.20 (Progress (Co-Abs)
34
). If · ⊢ c :𝜃 Πx :𝛿0 A.B, then there exists some lambda term v

such that · ⊢𝜃 c −⇀∗ v
31

sn_proof.v:defeq_join
32

sn_proof.v:defeq_consist
33

progress.v:covalue_semi_progress

34
progress.v:covalue_progress_abs
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The proof of Lemma 4.20 proceeds by case analysis on c. When c is not a coerced term, it must

be in head form. The result then follows immediately by inverting the judgment · ⊢ c :𝜃 Πx :𝛿0 A.B.
Unlike dependent type theories with implicit conversion rules, we do not need a canonical form

lemma for function types since rule T-Conv would require c to be a coerced term.

The complex case is when c takes the form of a coerced term. Lemma 4.19 allows us to take a few

administrative reduction steps to reduce c into c0▷𝛾 for some c0 and𝛾 where c0 is not a coerced term
(and thus must be in head form). Recall that c is ascribed the type Πx :𝛿0 A.B. Since administrative

reduction is typing-preserving (Lemma 4.3), c0 ▷ 𝛾 must also have type Πx :𝛿0 A.B. Therefore, 𝛾
must witness the equality between Πx :𝛿0 A.B and the type ascribed to c0. By Lemma 4.18 and the

fact that c0 is in head form, c0 must be a lambda term since otherwise 𝛾 would witness an equality

between the function type and a type with a distinct head form, contradicting the consistency

lemma. Finally, we complete the proof of Lemma 4.20 by stepping c0 ▷ 𝛾 into a lambda term with

rule CR-AbsPush.

With a similar argument, we prove the following fact about natural numbers.

Lemma 4.21 (Progress (Co-Nat)
35
). If · ⊢ c :

𝜃 N, then there exists some term c0 of either the
successor form or the zero form such that · ⊢𝜃 c −⇀∗ c0.

From Lemma 4.20 and Lemma 4.21, we prove progress for the computational reduction relation

by induction over the typing derivation.

Theorem 4.22 (Progress
36
). If · ⊢ a :

𝜃 A, then either a is a covalue or there exists some b such that
· ⊢𝜃 a { b.

5 EXTENSIONS
More expressive logical sublanguage. Compared to the coercion proof language of GHC’s core

language, the logical sublanguage of System DE is significantly more expressive as it allows

programmers to write inductive proofs. However, compared to a type theory like CIC [Coquand

and Paulin 1990] or MLTT [Martin-Löf 1975], the 𝐿 fragment lacks features such as polymorphism

and type-level computations. However, extending the 𝐿 fragment is just a matter of additional

work; there is no fundamental limitation for such an extension. We believe that we would be able

to adapt existing well-studied normalization proofs to this framework.

Strong existential types. SystemDE employs two relevancemodes,𝑅 and 𝐼 , with the latter denoting

both runtime and compile-time irrelevance. This mechanism is inspired by the design of the DDC

calculus [Choudhury et al. 2022]. As observed in DDC, identifying runtime with compile-time

irrelevance is insufficient to encode strong existential types—a type where the first component is

irrelevant at runtime, but required during type checking. To express this finer distinction, DDC is

parameterized by a lattice of relevance levels that can be instantiated with the three levels required

here, or more, for other forms of dependency analysis. For simplicity, we stick with two modes in

System DE, but it would be straightforward to add more.

Strictness as a mode. As a model for non-strict computation, System DE includes only call-by-

name functions. However, a pragmatic programming language, like GHC, also includes support for

defining strict functions [Eisenberg and Peyton Jones 2017]. Strictness can be tricky in a dependently-

typed language because one must also enforce value restrictions at the type-level [Casinghino et al.

2014]. However, this is another opportunity where modes can be used.

35
progress.v:covalue_nat_progress

36
progress.v:progress
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Extended 𝐿 and 𝑃 interactions. In System DE, the consistency of equality reflection is assured

because terms from the 𝑃 fragment can never determine the computation of the 𝐿 fragment.

However, there are conditions under which we would like to safely relax this invariant.

Consider the following definition of a list as the fixpoint of a positive functor [Swierstra 2008].

type List' a = fix (ListF a)

data ListF r a where
NilF :: ListF r a
ConsF :: a -> r -> ListF r a

fix :: forall a. (a -> a -> a) -> a -> a
fix f a = f a (fix f a)

A term of the List' type can never be marked as logical because the formation of the type relies

on general recursion. However, we can recover an inductive list by bounding the size of List'
with an irrelevant logical natural number.

-- a potentially nonterminating computation
sizeList' :: List' a -> Nat
sizeList' NilF = Z
sizeList' (ConsF a as) = S (sizeList' as)

-- a refinement of the List' type that only includes inductive lists
data InductiveList' a where

IL' :: foreach (xs:: List' a) (n::𝐿 Nat)
-> forall (pf ::𝐿 sizeList' xs :=: n). InductiveList' a

We can already define IndList' in System DE because potentially diverging functions such as

sizeList' can appear in equality types. What we would like to do is to show that operations

defined over this type, such as map and fold, terminate.

However, defining such operations in the logical fragment means that we must be able to pattern

match a programmatic datatype in a logical context. This sort of interaction between the 𝐿 and 𝑃

fragments can be done safely as long as there is evidence that the scrutinee has a normal form. In

IndList' above, the equality sizeList' xs :=: n asserts that xs has a finite size and may only

be derived when xs itself terminates.

More generally, we believe that once we add datatypes to System DE, we can extend our results

with a new pattern matching construct that can destruct a 𝑃 term within an 𝐿 computation in the

presence of appropriate evidence. This extension would be useful for extrinsic reasoning about

𝑃-only data types, such as those defined through recursion schemes.

Functional extensionality. System DE is an extensionally-flavored type theory. A proof term of

equality from the 𝐿 fragment can be directly reflected into the equality judgment through rule E-

Reflect. Likewise, a coercion proof can be embedded into the term language through rule T-Reify

when the local context Γ0 in the judgment Γ; Γ0 ⊢𝜃 𝛾 : a ∼ b is empty. In Section 3.3 and Section 4,

we explain why the local context is important for us to derive Lemma 4.17. However, not only

does this design complicate our typing rules, but it also limits the expressiveness of our language.

Because of this restriction, functional extensionality is not a derivable property.

We suppress the expressiveness of the reflection rule not because the more powerful version

is unsound, but because our existing proofs do not show its soundness. The issue is that our

interpretation of equality as joinability does not identify enough terms. Therefore, instead of
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restricting rule E-Reflect to make Lemma 4.17 hold, an alternative might be to interpret the equality

judgment as observational equality. However, this change would require significant modification

to our arguments, so we leave it to future work.

6 RELATEDWORK
6.1 Nontermination and Dependent Type Theory
There has been a long history of support for nonterminating computation in dependently typed

languages. Dependent Type Theory with the ★ : ★ axiom is inconsistent as a logic, but can be

part of a sound type system for a programming language [Cardelli 1986]. Martin-Löf’s partial

type theory[Martin-Löf 1983] extended MLTT [Martin-Löf 1975] with a general fixpoint operator,

making the type theory inconsistent as a programming logic as all types can inhabited an infinite

loop. Palmgren [1993] generalized partial type theory with universe levels and assigned the extended

system a domain-theoretic interpretation. Notably, Palmgren [1993] made the observation that the

identity type in partial type theory cannot be made extensional since doing so would allow the

definitional equality to convert between any two terms that have the same type. The design of

DE shows that extensional equality can be soundly included in the language when the reflected

equalities are restricted to a terminating fragment of the language.

The Nuprl system [Constable et al. 1986] allows the fixpoint combinator to appear in terms.

However, to assign a type to a term, the programmer must provide a termination proof. Constable

and Smith [1987] extended Nuprl with partial types, a mechanism that allows types to be inhabited

by partial computations. To ensure the consistency of the type system, the typing rule of the fixpoint

combinator requires the partial type from its input function to be admissible. System DE, on the

other hand, extends a language that already supports partial computations with terminating and

erasable proofs. Since we want our design to be applicable to Haskell, we do not want to impose

any constraints that would make the programming fragment less expressive.

In proof assistants such as Agda and Coq, the Termination monad [Capretta 2005] and interaction

trees [Xia et al. 2019] can be used to model nontermination in a terminating logic through the use of

coinductive definitions [Martin-Löf 1988]. These frameworks model programs defined using general

recursion, among other effects, and safely reason about their properties. Other approaches to general

recursion include the use of a “fuel” argument and Bove and Capretta’s inductive special-purpose

accessibility predicates [Bove and Capretta 2005]. In contrast, System DE allows sound equational

reasoning about programs in their native form, not interpreted monadically. Furthermore, while

general recursion is a source of many forms of nontermination, divergence can also come about

through other language features, such as non-strictly-positive datatypes or ★ : ★, the type-in-type

axiom.

The Zombie Trellys language [Casinghino 2014; Casinghino et al. 2014] also explored the use of

modes and modal types to distinguish the logical and nonterminating parts of programs. We adopt

the modalities 𝐿 and 𝑃 from that system. However, the programming fragment of of our system is

more expressive than that of Zombie: our language admits type-level computation and type-in-

type. The reason for this difference is that Zombie’s consistency proof requires the definition of a

step-indexed logical relation for the Zombie 𝑃 fragment. Not only is this proof more complex than

ours, since it defines separate relations for each of the 𝐿 and 𝑃 fragments, but it is not known how

to extend this form of argument to languages with type-level computation and type-in-type.

Zombie’s heavyweight proof technique stems from its permissive interactions between 𝑃 frag-

ment and the 𝐿 fragment, similar to those described in Section 5. Because System DE lacks datatypes,

these features are not (yet) supported by System DE. However, by identifying this trade-off, we

enable this modal treatment of termination to be applied to an expressive language like Haskell.
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Furthermore, we are confident that we can extend System DE with the most important of these

interactions, as described above.

F* [Swamy et al. 2013] uses an effect system to identify potentially diverging programs. To

reason about a diverging function, programmers may enrich its type signature with refinements

that describe it abstractly, through pre- and post-conditions. It is, however, impossible to prove

properties about diverging programs extrinsically since F* only allows intrinsically total terms to

appear in specifications. Extrinsic reasoning is important to us since Haskell already has a large

ecosystem. Being able to reason about potentially diverging programs allows us to incrementally

verify an existing code base without introducing breaking changes to its interface.

Liquid Haskell [Vazou 2016], an SMT-based theorem prover for the Haskell programming lan-

guage, supports refinement reflection [Vazou et al. 2017], a feature that allows a terminating subset

of Haskell to be used in specifications. It is possible to verify a program either extrinsically through a

lemma encoded as a terminating Haskell function, or intrinsically through pre- and post-conditions.

Like F*, only terminating programs can be reflected and therefore functions not proved to be termi-

nating when they are defined cannot be used for extrinsic reasoning. The subset of Haskell that

can be reflected is also limited. To ensure decidable type checking, Liquid Haskell unfolds reflected

top-level definitions before generating verification conditions that translate Haskell functions as

uninterpreted SMT functions
37
.

6.2 Irrelevance
Many dependently-typed languages include some form of relevance tracking. As described above,

System DE’s use of modes is inspired by DDC [Choudhury et al. 2022].

Liquid Haskell [Vazou 2016] supports a limited form of proof irrelevance. Properties in Liquid

Haskell can be specified in the form of refinements. Similar to System DE, proofs do not need to be

pattern matched before they can be used. It is possible to use the withTheorem proof combinator

(similar to the const function in Haskell) to reflect a lemma so the SMT solver can use it. However,

Liquid Haskell does not support specifying a function argument as irrelevant. Instead, it relies on

the fact that Haskell is by default a call-by-name language to ensure that variables used only for

reasoning do not induce overhead at runtime. The programmer has no way to statically ensure

that a variable is indeed not needed at runtime and therefore cannot ignore irrelevant arguments

during compile-time reasoning.

F* [Swamy et al. 2013], similar to Liquid Haskell, achieves compile-time proof irrelevance because

the SMT solver does not construct evidence for properties that appear in refinements. In addition, F*

supports runtime relevance by distinguishing between relevant and irrelevant total computations

through the effects Tot and GTot. The result of the Tot effect can be used in GTot but typically not

the other way round unless the usage does not affect the result of the Tot computation. Given a

type t, one can construct its irrelevant counterpart erased t. Through a pair of functions reveal
and hide, one can unbox and use a term of erased t in a Tot computation or box the result of a

GTot computation so it can be passed to a Tot computation. Unlike System DE, F* cannot mark a

potentially diverging but otherwise pure computation as irrelevant.

Quantitative type theory [Atkey 2018], used by both Idris [Brady 2021] and Agda [Abel and

Bernardy 2020], tracks both linearity and relevance through usage annotations in the context. Unlike

System DE, where terms and types are checked under the same judgment, quantitative type theory

includes a special judgment for type well-formedness that completely ignores relevance information.

As a result, quantitative type theory, when used as a framework for relevance tracking, can only

track runtime irrelevance and cannot take advantage of irrelevance during compile-time reasoning.

37
With Liquid Haskell’s proof by logical evaluation feature, it is possible to use the SMT solver to guide the unfolding of

reflected definitions.
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Instead, Agda supports compile-time irrelevance through a separate, disjoint mechanism [Abel and

Scherer 2012]. A function that takes a compile-time irrelevant argument cannot be applied to a

runtime irrelevant argument, even though compile-time irrelevance enforces a strictly stronger

irrelevance condition than runtime irrelevance.

6.3 Extensional vs. Intensional Type Theory
The propositional equality type in System DE is related to extensional type theory and its use of

equality reflection [Martin-Löf 1975], and differs from that of intensional type theories, such as Agda

andCoq. In these systems, castingwith a propositional equality proof requires an explicit elimination

form that pattern matches the equality proof. As a result, the proof is relevant in the computation.

By requiring an explicit elimination form, intensional type theory ensures normalization in all

contexts and supporting decidable type checking. In contrast, in the absence of explicit coercions

as in System DE, type checking can diverge for extensional type theory. For Haskell, we are not

overly concerned with this issue because type expressions can already diverge in the presence of

flags such as UndecidableInstances.

6.4 Explicit Coercions
Type systems with explicit coercions allow nonterminating expressions to appear in types while

retaining decidable type checking. For example, GHC’s core language, System FC [Sulzmann et al.

2007], was designed to allow type families with undecidable instances, i.e. type-level computations

that do not come with termination guarantees.

System DE is closely related to System DC, a dependently-typed variant of System FC, introduced

by Weirich et al. [2017] and based on work by Gundry [2013] and Eisenberg [2016]. System

DC includes a language of explicit coercions and coercion proofs, but does not allow equality

reflection. Instead, it includes a way for types and terms to abstract over coercion proofs, which

are themselves free of computation. By allowing terms of the propositional equality type to appear

in coercions, we both increase the expressiveness of the coercion language and eliminate the need

for coercion abstraction. However, this inclusion comes at a small cost: the consistency proof for

DC is independent of the rest of the system and can be shown via induction over the derivation of

the coercion judgment. In System DE, the distinction between the global and local context used by

the coercion judgement is a generalization of a similar restriction found in System DC.

7 CONCLUSION
In this work, we present SystemDE, a dependently-typed language with relevance tracking, equality

reflection, decidable type checking, and an expressive logical sublanguage that supports inductive

proofs. Both relevance tracking and termination tracking are implemented through the unifying

framework of modes.

In future work, in addition to the extensions we discuss in Section 5, we want to explore how to

integrate these features into the GHC’s type inferencer and core language and design a surface

language that can be elaborated into a language with explicit coercions. We believe that the

division between logical terms and coercion proofs that is present in System DE will manifest

in the distinction between proofs that users must write versus those that can be inferred. That

said, we also believe that the design of System DE is applicable not just to Haskell, but to future

dependently-typed languages.
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A SYSTEM SPECIFICATION
This appendix contains the complete set of rules that specify the semantics of our language.

A.1 Coercion Proof Syntax
co, 𝛾 ::= coercions

| reflect a reflected logical equality proof

| reflex a reflexivity

| sym𝛾 symmetry

| 𝛾1;𝛾2 transitivity

| Πx :𝛿0 𝛾1.𝛾2 congruence for dependent function type

| 𝜆𝛿0x :A.𝛾2 congruence for functions

| 𝛾1 𝛾
+
2
▷ 𝛾3 congruence for relevant function application

| 𝛾1 (a b)− ▷ 𝛾2 congruence for irrelevant function application

| red a b reduction

| reify𝜃𝛾1𝛾2 congruence for reify coercion

| pifst𝜃𝛾 injectivity for function types

| 𝛾𝜃0@𝛾1 ▷ 𝛾2 injectivity for function types

| 𝛾 ⊲ 𝛾1 𝛾2 congruence for conversion

| 𝛾1 ∼𝜃 𝛾2 congruence for equality

| succ𝛾 congruence for successor

| indB 𝛾1 𝛾2 (y.𝛾3) ▷ 𝛾4 congruence for induction

A.2 Typing
A.2.1 Typing.

Γ ⊢ a :
𝜃 A (Typing)

T-Reify

Γ; · ⊢𝜃0 𝛾 : a ∼ b

Γ ⊢ reify𝜃0 𝛾 :
𝜃 (a ≡𝜃0 b)

T-Conv

Γ ⊢ a :
𝜃 A

Γ̃; · ⊢𝜃 𝛾 : A ∼ B

Γ ⊢ a ▷ 𝛾 :
𝜃 B

T-Var

𝜃0 ≤ 𝜃

⊢ Γ x :𝑅,𝜃0 A ∈ Γ

Γ ⊢ x :
𝜃 A

T-Pi

Γ ⊢ A :
𝜃0 ★

Γ, x :𝑅,𝜃0 A ⊢ B :
𝜃 ★

Γ ⊢ Πx :𝜌0,𝜃0 A.B :
𝜃 ★

T-Abs

Γ̃ ⊢ Πx :𝛿0 A.B :
𝜃 ★

Γ, x :𝛿0 A ⊢ b :
𝜃 B

Γ ⊢ 𝜆𝛿0x :A.b :
𝜃 Πx :𝛿0 A.B

T-App

Γ ⊢ b :
𝜃 Πx :𝛿0 A.B

Γ ⊢ a :
𝛿0 A

Γ ⊢ b a𝛿0 :𝜃 B{a/x}
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T-Eq

Γ ⊢ a :
𝜃0 A Γ ⊢ b :

𝜃0 A

Γ ⊢ a ≡𝜃0 b :
𝜃 ★

T-TYPE

⊢ Γ

Γ ⊢ ★ :
𝑃 ★

T-Zero

⊢ Γ

Γ ⊢ zero :
𝜃 N

T-Succ

Γ ⊢ a :
𝜃 N

Γ ⊢ succ a :
𝜃 N

T-Nat

⊢ Γ

Γ ⊢ N :
𝜃 ★

T-Ind

Γ̃ ⊢ Πx :𝑅,𝐿N.A :
𝐿 ★

Γ ⊢ a1 :𝐿 N
Γ ⊢ a2 :𝐿 A{zero/x}

Γ, y :𝑅,𝐿N ⊢ a3 :𝐿 A{y/x} 𝑅,𝐿→ A{succ y/x}
Γ ⊢ ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3) :𝜃 A{a1/x}

A.2.2 Relevance-Moded Typing.

Γ ⊢ a :
𝛿 A (Relevance-moded typing)

CT-Leq

Γ ⊢ a :
𝜃 A

Γ ⊢ a :
𝑅,𝜃 A

CT-Top

Γ̃ ⊢ a :
𝜃 A

Γ ⊢ a :
𝐼 ,𝜃 A

A.2.3 Context Well-Formedness.

⊢ Γ (Context well-formedness)

T-Empty

⊢ ·

T-ConsTm

⊢ Γ

Γ̃ ⊢ A :
𝜃 ★ x ∉ dom Γ

⊢ Γ, x :𝜌,𝜃 A

A.2.4 Coercion Proofs.

Γ; Γ0 ⊢𝜃 𝛾 : a ∼ b (Coercion proofs)

E-Reflect

𝜃0 ≤ 𝜃

⊢ Γ, Γ0 Γ ⊢ a0 :𝐿 a ≡𝜃0 b
Γ ⊢ a :

𝜃 A Γ ⊢ b :
𝜃 A

Γ; Γ0 ⊢𝜃 reflect a0 : a ∼ b

E-ConvCong

Γ; Γ0 ⊢𝜃 𝛾 : a1 ∼ a2
Γ, Γ0 ⊢ a1 ▷ 𝛾1 :𝜃 A
Γ, Γ0 ⊢ a2 ▷ 𝛾2 :𝜃 A

Γ; Γ0 ⊢𝜃 𝛾 ⊲ 𝛾1 𝛾2 : a1 ▷ 𝛾1 ∼ a2 ▷ 𝛾2

E-EqCong

Γ; Γ0 ⊢𝜃0 𝛾1 : a1 ∼ a2
Γ; Γ0 ⊢𝜃0 𝛾2 : b1 ∼ b2

Γ, Γ0 ⊢ (a1 ≡𝜃0 b1) :𝜃 ★

Γ; Γ0 ⊢𝜃 𝛾1 ∼𝜃0 𝛾2 : (a1 ≡𝜃0 b1) ∼ (a2 ≡𝜃0 b2)

E-Reflex

Γ, Γ0 ⊢ a :
𝜃 A

Γ; Γ0 ⊢𝜃 reflex a : a ∼ a

E-ReifyCong

⊢ Γ, Γ0
Γ, Γ0; · ⊢𝜃0 𝛾1 : a ∼ b

Γ, Γ0; · ⊢𝜃0 𝛾2 : a ∼ b

Γ; Γ0 ⊢𝜃 reify𝜃0𝛾1𝛾2 : (reify𝜃0 𝛾1) ∼ (reify𝜃0 𝛾2)

E-Red

Γ, Γ0 ⊢ a >𝜃 b

Γ; Γ0 ⊢𝜃 red a b : a ∼ b
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E-Sym

Γ; Γ0 ⊢𝜃 𝛾 : b ∼ a

Γ; Γ0 ⊢𝜃 sym𝛾 : a ∼ b

E-Trans

Γ; Γ0 ⊢𝜃 𝛾1 : a ∼ a1
Γ; Γ0 ⊢𝜃 𝛾2 : a1 ∼ b

Γ; Γ0 ⊢𝜃 𝛾1;𝛾2 : a ∼ b

E-PiCong

Γ; Γ0 ⊢𝜃0 𝛾1 : A1 ∼ A2

Γ; Γ0, x :𝑅,𝜃0 A1 ⊢𝜃 𝛾2 : B1 ∼ B2
Γ, Γ0 ⊢ Πx :𝜌0,𝜃0 A1.B1 :𝜃 ★

Γ, Γ0 ⊢ Πx :𝜌0,𝜃0 A1.B2 :𝜃 ★

B3 = B2{x ▷ sym𝛾1/x}
Γ; Γ0 ⊢𝜃 Πx :𝜌0,𝜃0 𝛾1.𝛾2 : Πx :𝜌0,𝜃0 A1 .B1 ∼ Πx :𝜌0,𝜃0 A2 .B3

E-AbsCong

Γ̃, Γ0 ⊢ A :
𝜃0 ★

Γ; Γ0, x :𝜌0,𝜃0 A ⊢𝜃 𝛾2 : a1 ∼ a2
Γ, Γ0 ⊢ (𝜆𝜌0,𝜃0x :A.a2) :𝜃 B

Γ; Γ0 ⊢𝜃 𝜆𝜌0,𝜃0x :A.𝛾2 : 𝜆𝜌0,𝜃0x :A.a1 ∼ 𝜆𝜌0,𝜃0x :A.a2

E-AppCong

Γ; Γ0 ⊢𝜃 𝛾1 : a1 ∼ a2
Γ; Γ0 ⊢𝜃0 𝛾2 : b1 ∼ b2
Γ, Γ0 ⊢ a1 b1𝑅,𝜃0 :𝜃 A
Γ, Γ0 ⊢ a2 b2𝑅,𝜃0 :𝜃 B
Γ̃, Γ0; · ⊢𝜃 𝛾 : A ∼ B

Γ; Γ0 ⊢𝜃 𝛾1 𝛾+2 ▷ 𝛾 : (a1 b1𝑅,𝜃0 ) ▷ 𝛾 ∼ a2 b2𝑅,𝜃0

E-AppCongIrrel

Γ; Γ0 ⊢𝜃 𝛾1 : a1 ∼ a2
Γ̃, Γ0 ⊢ b1 :𝜃0 A
Γ̃, Γ0 ⊢ b2 :𝜃0 A

Γ, Γ0 ⊢ a1 b1𝐼 ,𝜃0 :𝜃 B1
Γ, Γ0 ⊢ a2 b2𝐼 ,𝜃0 :𝜃 B2
Γ̃, Γ0; · ⊢𝜃 𝛾 : B1 ∼ B2

Γ; Γ0 ⊢𝜃 𝛾1 (b1 b2)− ▷ 𝛾 : (a1 b1𝐼 ,𝜃0 ) ▷ 𝛾 ∼ a2 b2𝐼 ,𝜃0

E-PiFst

𝜃0 ≤ 𝜃1

Γ; Γ0 ⊢𝜃 𝛾 : (Πx :𝜌0,𝜃0 A1.B1) ∼ (Πx :𝜌0,𝜃0 A2 .B2)
Γ; Γ0 ⊢𝜃1 pifst𝜃𝛾 : A1 ∼ A2
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E-PiSnd

𝜃0 ≤ 𝜃

Γ; Γ0 ⊢𝜃0 𝛾 : (Πx :𝜌1,𝜃1 A1 .B1) ∼ (Πx :𝜌1,𝜃1 A2.B2)
Γ; Γ0 ⊢𝜃1 𝛾1 : a1 ∼ a2
Γ, Γ0 ⊢ a2 :𝜃1 A2

Γ, Γ0; · ⊢𝜃1 𝛾2 : A2 ∼ A1

Γ; Γ0 ⊢𝜃 𝛾𝜃0@𝛾1 ▷ 𝛾2 : B1{a1 ▷ 𝛾2/x} ∼ B2{a2/x}

E-SuccCong

Γ; Γ0 ⊢𝜃 𝛾 : a ∼ b
Γ, Γ0 ⊢ a :

𝜃 N

Γ; Γ0 ⊢𝜃 succ𝛾 : succ a ∼ succ b

E-IndCong

Γ; Γ0 ⊢𝐿 𝛾1 : a1 ∼ b1
Γ; Γ0 ⊢𝐿 𝛾2 : a2 ∼ b2

Γ; Γ0, y :𝑅,𝐿N ⊢𝐿 𝛾3 : a3 ∼ b3
Γ, Γ0 ⊢ ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3) :𝜃 A0

Γ, Γ0 ⊢ ind(Πx:𝑅,𝐿N.A) b1 b2 (y.b3) :𝜃 B0
Γ̃, Γ0; · ⊢𝜃 𝛾 : A0 ∼ B0

Γ; Γ0 ⊢𝜃 ind(Πx:𝑅,𝐿N.A) 𝛾1 𝛾2 (y.𝛾3) ▷ 𝛾 : (ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3)) ▷ 𝛾 ∼ ind(Πx:𝑅,𝐿N.A) b1 b2 (y.b3)

A.2.5 Primitive Reduction.

Γ ⊢ a >𝜃 b (Primitive Reduction)

aBeta-ConvRefl

Γ ⊢ a ▷ 𝛾 :
𝜃 B

Γ̃; · ⊢𝜃 𝛾 : A ∼ A

Γ ⊢ a ▷ 𝛾 >𝜃 a

aBeta-AppAbs

Γ ⊢ (𝜆𝛿0x :A.a) b𝛿0 :𝜃 A0

Γ ⊢ (𝜆𝛿0x :A.a) b𝛿0 >𝜃 a{b/x}

aBeta-Combine

Γ ⊢ (a ▷ 𝛾1) ▷ 𝛾2 :𝜃 A

Γ ⊢ (a ▷ 𝛾1) ▷ 𝛾2 >𝜃 a ▷ (𝛾1;𝛾2)

aBeta-AbsPush

Γ ⊢ (𝜆𝛿0x :A1.a1) ▷ 𝛾 :
𝜃 A

𝜃0 ≤ 𝜃

Γ̃; · ⊢𝜃0 𝛾 : (Πx :𝛿0 A1.B1) ∼ (Πx :𝛿0 A2.B2)
a2 = a1{x ▷ sym (pifst𝜃0𝛾)/x}

𝛾2 = 𝛾𝜃0@(reflex x) ▷ (sym (pifst𝜃0𝛾))
Γ ⊢ (𝜆𝛿0x :A1.a1) ▷ 𝛾 >𝜃 𝜆𝛿0x :A2 .(a2 ▷ 𝛾2)

aBeta-IndSucc

Γ ⊢ ind(Πx:𝑅,𝐿N.A) (succ a1) a2 (y.a3) :𝜃 B

Γ ⊢ ind(Πx:𝑅,𝐿N.A) (succ a1) a2 (y.a3) >𝜃 (a3{a1/y}) (ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3))𝑅,𝐿

aBeta-IndZero

Γ ⊢ ind(Πx:𝑅,𝐿N.A) zero a2 (y.a3) :𝜃 B

Γ ⊢ ind(Πx:𝑅,𝐿N.A) zero a2 (y.a3) >𝜃 a2
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A.3 Operational Semantics
A.3.1 Computational Reduction.

Γ ⊢𝜃 a { b (Computational Reduction)

R-AppAbs

a is a covalue
Γ ⊢𝜃 a −⇀∗ 𝜆𝛿0x :A.a1

Γ ⊢𝜃 a b𝛿0 { a1{b/x}

R-App

Γ ⊢𝜃 a1 { a2

Γ ⊢𝜃 a1 b𝛿0 { a2 b𝛿0

R-Conv

Γ ⊢𝜃 a1 { a2

Γ ⊢𝜃 a1 ▷ 𝛾 { a2 ▷ 𝛾

R-Succ

Γ ⊢𝜃 a1 { a2

Γ ⊢𝜃 succ a1 { succ a2

R-IndSucc

a0 is a covalue
Γ ⊢𝐿 a0 −⇀∗ succ a1

Γ ⊢ ind(Πx:𝑅,𝐿N.A) a0 a2 (y.a3) :𝜃 B0
Γ ⊢ ind(Πx:𝑅,𝐿N.A) (succ a1) a2 (y.a3) :𝜃 B1

Γ̃; · ⊢𝜃 𝛾 : B1 ∼ B0

Γ ⊢𝜃 ind(Πx:𝑅,𝐿N.A) a0 a2 (y.a3) { (a3{a1/y} (ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3))𝑅,𝐿) ▷ 𝛾

R-IndZero

a1 is a covalue
Γ ⊢𝐿 a1 −⇀∗ zero

Γ ⊢ ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3) :𝜃 B0
Γ ⊢ ind(Πx:𝑅,𝐿N.A) zero a2 (y.a3) :𝜃 B1

Γ̃; · ⊢𝜃 𝛾 : B1 ∼ B0

Γ ⊢𝜃 ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3) { a2 ▷ 𝛾

R-Ind

Γ ⊢𝐿 a1 { b1
Γ ⊢ ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3) :𝜃 B0
Γ ⊢ ind(Πx:𝑅,𝐿N.A) b1 a2 (y.a3) :𝜃 B1

Γ̃; · ⊢𝜃 𝛾 : B1 ∼ B0

Γ ⊢𝜃 (ind(Πx:𝑅,𝐿N.A) a1 a2 (y.a3)) { (ind(Πx:𝑅,𝐿N.A) b1 a2 (y.a3)) ▷ 𝛾

A.3.2 Multiple Reduction.

Γ ⊢𝜃 a {∗ b (Multiple Reductions)

Rs-Refl

Γ ⊢𝜃 a {∗ a

Rs-Step

Γ ⊢𝜃 a1 { a2
Γ ⊢𝜃 a2 {∗ a3

Γ ⊢𝜃 a1 {∗ a3
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A.3.3 Administrative Reduction.

Γ ⊢𝜃 a −⇀ b (Administrative Reduction)

CR-ConvRefl

Γ̃; · ⊢𝜃 𝛾 : A ∼ A

Γ ⊢𝜃 a ▷ 𝛾 −⇀ a

CR-Combine

Γ ⊢𝜃 (a ▷ 𝛾1) ▷ 𝛾2 −⇀ a ▷ (𝛾1;𝛾2)

CR-AbsPush

Γ ⊢ (𝜆𝛿0x :A1.a1) ▷ 𝛾 :
𝜃 A

𝜃0 ≤ 𝜃

Γ̃; · ⊢𝜃0 𝛾 : (Πx :𝛿0 A1.B1) ∼ (Πx :𝛿0 A2.B2)
a2 = a1{x ▷ sym (pifst𝜃0𝛾)/x}

𝛾2 = 𝛾𝜃0@(reflex x) ▷ (sym (pifst𝜃0𝛾))
Γ ⊢𝜃 (𝜆𝛿0x :A1.a1) ▷ 𝛾 −⇀ 𝜆𝛿0x :A2.(a2 ▷ 𝛾2)

CR-ConvCong

Γ ⊢𝜃 a −⇀ b

Γ ⊢𝜃 a ▷ 𝛾 −⇀ b ▷ 𝛾

CR-Succ

Γ ⊢𝜃 a1 −⇀ a2

Γ ⊢𝜃 succ a1 −⇀ succ a2

A.3.4 Multiple Administrative Reductions.

Γ ⊢𝜃 a −⇀∗ b (Multiple Administrative Reductions)

CRs-Refl

Γ ⊢𝜃 a −⇀∗ a

CRs-Step

Γ ⊢𝜃 a1 −⇀ a2
Γ ⊢𝜃 a2 −⇀∗ a3

Γ ⊢𝜃 a1 −⇀∗ a3

B ERASURE
This appendix includes definitions needed to state our result about erasure, described in Section 3.4.

B.1 Erasure Operation

|reify𝜃 𝛾 | = □
|Πx :𝛿0 A.B| = □
|𝜆𝛿0x :A.a| = 𝜆x .|a|

|a b𝑅,𝜃 | = |a| |b|
|a b𝐼 ,𝜃 | = |a| □

| ★ | = □
|x | = x

|a ≡𝜃 b| = □
|a ▷ 𝛾 | = |a|

|N| = □
|succ a| = succ |a|
|zero| = zero

|indA a b1 (x .b2) | = ind |a| |b1 | (x .|b2 |)
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B.2 Untyped Reduction

a { b (Untyped reduction)

ER-App

a1 { a2
a1 b { a2 b

ER-AppAbs

(𝜆x .a) b { a{b/x}

ER-Succ

a1 { a2
succ a1 { succ a2

ER-IndZero

ind zero a2 (y.a3) { a2

ER-IndSucc

ind (succ a1) a2 (y.a3) { (a3{a1/y}) (ind a1 a2 (y.a3))

ER-Ind

a1 { b1
ind a1 a2 (y.a3) { ind b1 a2 (y.a3)

C PARALLEL REDUCTION
This appendix lists additional definitions necessary for our consistency proof, as described in

Section 4.2.

C.1 Parallel Reduction (Untyped and Mode-Aware)

Ω ⊢ a ⇒ b (Parallel reduction)

P-Var

x :𝑅 ∈ Ω

Ω ⊢ x ⇒ x

P-Type

Ω ⊢ ★⇒ ★

P-Reify

Ω ⊢ reify𝜃0 𝛾1 ⇒ reify𝜃0 𝛾2

P-AppCong

Ω ⊢ a1 ⇒ a2
Ω ⊢𝜌 b1 ⇒ b2

Ω ⊢ a1 b1𝜌,𝜃 ⇒ a2 b2𝜌,𝜃

P-AppAbs

Ω ⊢ a1 ⇒ 𝜆𝜌,𝜃x :A.a2
Ω ⊢𝜌 b1 ⇒ b2

Ω ⊢ a1 b1𝜌,𝜃 ⇒ a2{b2/x}

P-Conv

Ω ⊢ a1 ⇒ a2
Ω ⊢ a1 ▷ 𝛾 ⇒ a2

P-ConvCong

Ω ⊢ a1 ⇒ a2
Ω ⊢ a1 ▷ 𝛾1 ⇒ a2 ▷ 𝛾2

P-Pi

Ω ⊢ A1 ⇒ A2

Ω, x : 𝑅 ⊢ B1 ⇒ B2

Ω ⊢ Πx :𝛿 A1.B1 ⇒ Πx :𝛿 A2.B2

P-Abs

Ω, x : 𝜌 ⊢ b1 ⇒ b2

Ω ⊢ 𝜆𝜌,𝜃x :A1.b1 ⇒ 𝜆𝜌,𝜃x :A2.b2

P-Eq

Ω ⊢ a1 ⇒ a2
Ω ⊢ b1 ⇒ b2

Ω ⊢ a1 ≡𝜃 b1 ⇒ a2 ≡𝜃 b2

P-Zero

Ω ⊢ zero ⇒ zero

P-Succ

Ω ⊢ a1 ⇒ a2
Ω ⊢ succ a1 ⇒ succ a2

P-Nat

Ω ⊢ N⇒ N
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P-IndZero

Ω ⊢ a1 ⇒ zero
Ω ⊢ a2 ⇒ b2

Ω, y : 𝑅 ⊢ a3 ⇒ b3
Ω ⊢ indA a1 a2 (y.a3) ⇒ b2

P-IndSucc

Ω ⊢ a1 ⇒ succ b1
Ω ⊢ a2 ⇒ b2

Ω, y : 𝑅 ⊢ a3 ⇒ b3
Ω ⊢ indA a1 a2 (y.a3) ⇒ (b3{b1/y}) (indA0

b1 b2 (y.b3))𝑅,𝐿

P-IndCong

Ω ⊢ a1 ⇒ b1
Ω ⊢ a2 ⇒ b2

Ω, y : 𝑅 ⊢ a3 ⇒ b3
Ω ⊢ indA a1 a2 (y.a3) ⇒ indA0

b1 b2 (y.b3)

C.2 Parallel Reduction, Relevance-Moded
Ω ⊢𝜌 a ⇒ b (Parallel reduction, relevance-moded)

CP-Leq

Ω ⊢ a ⇒ b

Ω ⊢𝑅 a ⇒ b

CP-Nleq

Ω ⊢𝐼 a ⇒ b

C.3 Multistep Mode-Aware Parallel Reduction

Ω ⊢ a ⇒+ b (Transitive closure of parallel reduction)

MP-One

Ω ⊢ a ⇒ b

Ω ⊢ a ⇒+ b

MP-Step

Ω ⊢ a ⇒ b
Ω ⊢ b ⇒+ a′

Ω ⊢ a ⇒+ a′

C.4 Joinability

Ω ⊢ a ⇔ b (Joinability)
join

Ω ⊢ a1 ⇒+ b
Ω ⊢ a2 ⇒+ b

Ω ⊢ a1 ⇔ a2
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