
A Formal Model of Checked C
Liyi Li, Yiyun Liu†, Deena Postol, Leonidas Lampropoulos, David Van Horn, and Michael Hicks

University of Maryland †University of Pennsylvania

Abstract—We present a formal model of Checked C, a dialect
of C that aims to enforce spatial memory safety. Our model
pays particular attention to the semantics of dynamically sized,
potentially null-terminated arrays. We formalize this model in
Coq, and prove that any spatial memory safety errors can be
blamed on portions of the program labeled unchecked; this is
a Checked C feature that supports incremental porting and
backward compatibility. While our model’s operational semantics
uses annotated (“fat”) pointers to enforce spatial safety, we
show that such annotations can be safely erased. Using PLT
Redex we formalize an executable version of our model and a
compilation procedure to an untyped C-like language, as well as
use randomized testing to validate that generated code faithfully
simulates the original. Finally, we develop a custom random
generator for well-typed and almost-well-typed terms in our
Redex model, and use it to search for inconsistencies between
our model and the Clang Checked C implementation. We find
these steps to be a useful way to co-develop a language (Checked
C is still in development) and a core model of it.

I. INTRODUCTION

The C programming language remains extremely popular
despite the emergence of new, modern languages. Unfortu-
nately, C programs lack spatial memory safety, which makes
them susceptible to a host of devastating vulnerabilities,
including buffer overflows and out-of-bounds reads/writes.
Despite their long history, buffer overflows and other spatial
safety violations are among the most prevalent and dangerous
vulnerabilities on the Internet today [27].

Several industrial and research efforts—including
CCured [20], Softbound [19], and ASAN [24]—have explored
means to compile C programs to automatically enforce spatial
safety. These approaches all impose performance overheads
deemed too high for deployment use. Recently, Elliott et al.
[4] introduced Checked C, an open-source extension to C with
new types and annotations whose use can ensure a program’s
spatial safety. Importantly, Checked C supports development
that is incremental and compositional. Code regions (e.g.,
functions or whole files) designated as checked enforce
spatial safety in a manner preserved by composition with
other checked regions. But not all regions must be checked:
Checked C’s annotated checked pointers are binary-compatible
with legacy pointers, and may coexist in the same code,
which permits a deliberate (and semi-automated) refactoring
process. Parts of the FreeBSD kernel have been successfully
ported to Checked C [3], and overall, performance overhead
seems low enough for practical deployment.

While Checked C promises to enforce spatial safety, we
might wonder whether its design and implementation deliver
on this promise, or even what “spatial safety” means when
a program contains both checked and unchecked code. In

prior work, Ruef et al. [23] developed a core formalization
of Checked C and with it proved a soundness theorem for
checked code: any stuck (i.e., ill-defined) state reached by a
well-typed program amounts to a spatial safety violation; such
a state can always be attributed to, i.e., blamed on, the execu-
tion of code that is not in a checked region. While their work is
a good start, it fails to model important aspects of Checked C’s
functionality, particularly those involving pointers to arrays. In
this paper, we cover this gap, making three main contributions.

Dynamically bounded and null-terminated arrays. Our
first contribution is a core formalism called CORECHKC,
which extends Ruef et al. [23] with several new features, most
notably dynamically bounded arrays (Section III). Dynami-
cally bounded arrays are those whose size is known only at
run time, as designated by in-scope variables using dependent
types. A pointer’s accessible memory is bounded both above
and below, to admit arbitrary pointer arithmetic.

CORECHKC also models null-terminated arrays, a kind
of dynamically bounded array whose upper bound defines
the array’s minimum length—additional space is available
up to a null terminator. For example, the Checked C type
nt_array_ptr<char> p:count(n) says that p has length
at least n (excluding the null terminator), but further capacity
is present if p[n] is not null. Checked C (and CORECHKC)
supports flow-sensitive bounds widening: statements of the
form if (*p) s, where p’s type is nt_array_ptr<T>

count(0), typecheck statement s under the assumption that
p has type nt_array_ptr<T> count(1), i.e., one more than
it was, since the character at the current-known length is
non-null. Similarly, the call n = strlen(p) will widen p’s
bounds to n. Subtyping permits treating null-terminated arrays
as normal arrays of the same size (which does not include, and
thereby protects, the null terminator).1

We prove, in Coq, a blame theorem for CORECHKC. As
far as we are aware, ours is the first formalized type system
and proof of soundness for pointers to null-terminated arrays
with expandable bounds.

Sound compilation of checked pointers. Our second con-
tribution is a formalization of bounds-check insertion for array
accesses (Section IV). Our operational semantics annotates
each pointer with metadata that describes its bounds, and the
assignment and dereference rules have premises to confirm the
access is in bounds. An obvious compilation scheme (taken
by Cyclone [7, 10], CCured [20], and earlier works) would
be to translate annotated pointers to multi-word objects: one
word for the pointer, and 1-2 words to describe its lower

1See Sec. VI for a careful comparison of Ruef et al. [23] and CORECHKC.

49

2022 IEEE 35th Computer Security Foundations Symposium (CSF)

© 2022, Liyi Li. Under license to IEEE.
DOI 10.1109/CSF54842.2022.00004

20
22

 IE
EE

 3
5t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

78
-1

-6
65

4-
84

17
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

48
42

.2
02

2.
99

19
65

7

CoreChkC(Coq)

Type SystemSemantics Sound
Verified

CoreChkC(Redex)

Type SystemSemantics Sound

Validated

Compilation Validated

CoreC

Checked C⊆ ⊆

Type SystemSemantics

Validated Validated

Fig. 1: CORECHKC models’ relationship to Checked C

and upper bounds. Inserted checks reference these bounds.
While convenient, such “fat” pointers are expensive, and break
backward binary compatibility with legacy pointers.

To show that pointer annotations can be safely erased, and
thus fat pointers are not needed, we formalize a translation
of CORECHKC to COREC, which is an untyped version
of CORECHKC that drops metadata annotations, and lacks
bounds/null checks in the semantics rules. Instead, the compi-
lation process inserts null/bounds checks explicitly, leveraging
compile-time type information. While we do not definitively
prove it, we provide strong evidence that compilation is cor-
rect. We use PLT Redex [6] to mechanize (a generalization of)
CORECHKC, COREC, and compilation between the two, and
we use randomized testing to validate that the compiled pro-
gram simulates the original. In addition to demonstrating the
technical point that metadata annotations in the CORECHKC
formalism do not necessitate fat pointers, compilation also
sheds light on the actual Checked C compilation process.

As far as we are aware, CORECHKC is the first formalism
to cleanly separate bounds-checking compilation from the core
semantics; prior work [2, 29] merged the two, conflating mean-
ing with mechanism. In carrying out the formalization, we
discovered that our compilation approach for null-terminated
array pointers is more expressive than that proposed in the
Checked C specification [25] (Section IV-B); we would not
have discovered this improvement had we not separated checks
from semantics.

Model-based randomized testing. Our third and final
contribution is a strategy and implementation of model-based
randomized testing (Section V). To check the correctness of
our formal model, we compare the behavior between the
existing Clang Checked C implementation and our own model.
This is done by a conversion tool that converts expressions
from CORECHKC into actual Checked C code that can be
compiled by the Clang Checked C compiler. We build a
random generator of programs largely based on the typing
rules of CORECHKC and make sure that, both statically and
dynamically, CORECHKC and Clang Checked C are consistent
after conversion. This helped rapidly prototype the model and
uncovered several issues in the Checked C compiler.

Summary Visualization. The relationship among our con-
tributions is visualized in Fig. 1. With the Coq model of
CORECHKC we prove soundness (and with it, blame) of the
Checked C type system and semantics. With the Redex model,
we use randomized testing to validate both type soundness

and compilation correctness, where the latter shows how
compilation need not output fat pointers despite the use of
pointer annotations in the CORECHKC model. The Redex
CORECHKC model is also the basis of randomized testing of
the correctness of the Checked C compiler implementation,
both its type checker and the semantics of its emitted code,
at least for the subset of the language in the Redex model.
The Redex model’s syntax is slightly richer than the Coq
version: conditional guards and function arguments may be
arbitrary expressions, where the Coq version limits them to
constants and variables, making handling of dependent types
a bit simpler. We find a useful synergy between the Coq and
Redex models for carrying out a language development. The
richer, executable Redex model is useful for quickly modeling
and testing new features, both formally and against a real
implementation. Once solidified, new features can be added to
the Coq model (perhaps somewhat simplified) for final proofs
of correctness.

We begin with a review of Checked C (Section II), present
our main contributions (Sections III–V), and conclude with
a discussion of related and future work (Sections VI, VII).
All code and proof artifacts (both for Coq and Redex) can be
found at https://github.com/plum-umd/checkedc.

II. CHECKED C OVERVIEW

This section describes Checked C, which extends C with
new pointer types and annotations that ensure spatial safety.
Development of Checked C was initiated by Microsoft Re-
search in 2015 but starting in late 2021 was forked and is
now actively managed by the Secure Software Development
Project (SSDP). Details can be found in a prior overview [4]
or the full specification [25]. Checked C is implemented as
an extension of Clang/LLVM and the SSDP fork is freely
available at https://github.com/secure-sw-dev.

A. Checked Pointer Types

Checked C introduces three varieties of checked pointer:
• ptr<T> types a pointer that is either null or points to a

single object of type T .
• array_ptr<T> types a pointer that is either null or

points to an array of T objects. The array width is defined
by a bounds expression, discussed below.

• nt_array_ptr<T> is like array_ptr<T> except that
the bounds expression defines the minimum array width—
additional objects may be available past the upper bound,
up to a null terminator.

A bounds expression used with the latter two pointer types
has three forms:
• count(e) where e defines the array’s length. Thus,

if pointer p has bounds count(n) then the accessible
memory is in the range [p, p+n]. Bounds expression e
must be side-effect free and may only refer to variables
whose addresses are not taken, or adjacent struct fields.

• byte_count(e) is like count, but expresses arith-
metic using bytes, no objects; i.e., count(e) used

50

1 nt_array_ptr<const char>
2 parse_utf16_hex(nt_array_ptr<const char> s,
3 ptr<uint> result) {
4 int x1, x2, x3, x4;
5 if (s[0] != 0) { x1 = hex_char_to_int(s[0]);
6 if (s[1] != 0) { x2 = hex_char_to_int(s[1]);
7 if (s[2] != 0) { x3 = hex_char_to_int(s[2]);
8 if (s[3] != 0) { x4 = hex_char_to_int(s[3]);
9 if (x1 != -1 && x2 != -1 && x3 != -1 && x4 != -1){

10 *result = (uint)((x1<<12)|(x2<<8)|(x3<<4)|x4);
11 return s+4;
12 ...// several } braces
13 }
14 return 0;
15 }
16 void parse(nt_array_ptr<const char> s,
17 array_ptr<uint> p : count(n),
18 int n) {
19 array_ptr<uint> q : bounds(p,p+n) = p;
20 while (s && q < p+n) {
21 array_ptr<uint> r : count(1) =
22 dyn_bounds_cast<array_ptr<uint>>(q,count(1));
23 s = parse_utf16_hex(s,r);
24 q++;
25 }
26 }

Fig. 2: Parsing a String of UTF16 Hex Characters in
Checked C

for array_ptr<T> is equivalent to byte_count(e ×
sizeof(T))

• bounds(el,eh) where el and eh are pointers that bound
the accessible region [el, eh) (the expressions are sim-
ilarly restricted). Bounds count(e) is shorthand for
bounds(p, p + e). This most general form of bounds
expression is useful for supporting pointer arithmetic.

Dropping the bounds expression on an nt_array_ptr is
equivalent to the bounds being count(0).

The Checked C compiler will instrument loads and stores
of checked pointers to confirm the pointer is non-null, and
the access is within the specified bounds. For pointers p of
type nt_array_ptr<T>, such a check could spuriously fail
if the index is past p’s specified upper bound, but before the
null terminator. To address this problem, Checked C supports
bounds widening. If p’s bounds expression is bounds(el,eh)
a program may read from (but not write to) eh; when the
compiler notices that a non-null character is read at the upper
bound, it will extend that bound to eh + 1.

B. Example

Fig. 2 gives an example Checked C program.2 The func-
tion parse_utf16_hex on lines 1-15 takes a null-terminated
pointer s as its argument, from which it attempts to read four
characters. These are interpreted as hex digits and converted
to an uint returned via parameter result. At first, s has
no specific bounds annotation, which we can interpret as

2Ported from the Parson JSON parser, https://github.com/kgabis/parson

count(0); this means that s[0] may be read on line 5. The
true branch of the conditional (which extends all the way to
the brace on line 13) is thus type-checked with s given a
widened bound of count(1). Likewise, the conditionals on
lines 6-8 each widen it one further; the widened pointer (s+4)
is returned on success.

The parse function on lines 16-26 repeatedly invokes
parse_utf16_hex with its parameter s, and fills out array
p whose declared length is the parameter n. Writes happen
via pointer q, which is updated using pointer arithmetic. We
specify its bounds as bounds(p,p+n) to support this: even as
q changes, variables p and n (and therefore also q’s bounds) do
not. Converting from an array_ptr<uint> to a ptr<uint>,
done for the call on line 23, requires proving the array has size
at least 1. While this is true because of the loop condition q

< p+n, which is q’s upper bound, the compiler is not smart
enough to figure this out. To convince it, we manually insert
a dynamic cast via dyn_bounds_cast, which is trusted at
compile-time but confirmed with a dynamic check at run-time.

While bounds checks are conceptually inserted on every
array load and store, many of these are eliminated by LLVM.
For example, all of the pointer accesses to s on lines 5-8 are
proved safe at compile-time, so no bounds checks are inserted
for them. Elliott et al. [4] reported average run-time overheads
of 8.6% on a pointer-intensive benchmark suite (49.3% in one
case); Duan et al. [3] measured no overhead at all on a port
of FreeBSD’s UDP and IP stacks to Checked C.

C. Other features

Checked C has other features not modeled in this paper.
Two in regular use are interop types, which ascribe checked
pointer types to unported legacy code, notably in libraries;
and generic types on both functions and structs, for type-
safe polymorphism. More details about these can be found in
the language specification.

D. Spatial Safety and Backward Compatibility

Checked C is backward compatible with legacy C in the
sense that all legacy code will type-check and compile. How-
ever, only code that appears in checked regions, which we
call checked code, is spatially safe. Checked regions can be
designated at the level of files, functions, or individual code
blocks, the first with a #pragma and the latter two using
the checked keyword.3 Within checked regions, both legacy
pointers and certain unsafe idioms (e.g., variadic function
calls) are disallowed. The code in Fig. 2 satisfies these
conditions, and will type-check in a checked region.

How should we think about code that contains both checked
and legacy components? Ruef et al. [23] proved, for a simple
formalization of Checked C, that checked code cannot be
blamed: Any spatial safety violation is caused by the execution
of unchecked code. In this paper we extend that result to a
richer formalization of Checked C.

51

Function names: f Variables: x Integers: n ::= Z
Mode: m ::= c | u
Bound: b ::= n | x + n

β ::= (b, b)

Word Type: τ ::= int | ptrm ω

Type Flag: κ ::= nt | ·
Type: ω ::= τ | [β τ]κ

Expression: e ::= n :τ | x | malloc(ω) | let x = e in e

| (τ)e | 〈τ〉e | f(e) | strlen(x)

| e + e | *e | *e = e | unchecked e
| if (e) e else e

Fig. 3: CORECHKC Syntax

III. FORMALIZATION

This section describes our formal model of Checked C,
called CORECHKC, making precise its syntax, semantics,
and type system. It also develops CORECHKC’s meta-theory,
including type soundness and the blame theorem.

A. Syntax

The syntax of CORECHKC is given by the expression-based
language presented in Fig. 3.

There are two notions of type in CORECHKC. Types τ
classify word-sized values including integers and pointers,
while types ω classify multi-word values such as arrays, null-
terminated arrays, and single-word-size values. Pointer types
(ptrm ω) include a mode annotation (m) which is either
checked (c) or unchecked (u) and a type (ω) denoting valid
values that can be pointed to. Array types include both the type
of elements (τ) and a bound (β) comprised of an upper and
lower bound on the size of the array ((bl, bh)). Bounds b are
limited to integer literals n and expressions x + n. Whether
an array pointer is null terminated or not is determined by
annotation κ, which is nt for null-terminated arrays, and ·
otherwise (we elide the · when writing the type). Here is the
corresponding Checked C syntax for these types:

array_ptr<τ> : count(n) ⇔ ptrc [(0, n) τ]

nt_array_ptr<τ> : count(n) ⇔ ptrc [(0, n) τ]nt

As a convention we write ptrc [b τ] to mean ptrc [(0, b) τ],
so the above examples could be rewritten ptrc [n τ] and
ptrc [n τ]nt, respectively.

CORECHKC expressions include literals (n : τ), vari-
ables (x), memory allocation (malloc(ω)), let binding
(let x = e1 in e2), static casts ((τ)e), dynamic casts
(〈τ〉e) (assumed at compile-time and verified at run-time,
see Sec. II-B), function calls (f(e)), addition (e1 + e2),
pointer dereference and assignment (*e) and (*e1 = e2), resp.),
unchecked blocks (unchecked e), the strlen operation
(strlen(x)), and conditionals (if (e) e1 else e2).

Integer literals n are annotated with a type τ which can
be either int, or ptrm ω in the case n is being used as a

3You can also designate unchecked regions within checked ones.

heap address (this is useful for the semantics); 0 : ptrm ω
(for any m and ω) represents the null pointer, as usual.
The strlen expression operates on variables x rather than
arbitrary expressions to simplify managing bounds information
in the type system; the more general case can be encoded with
a let. We use a less verbose syntax for dynamic bounds casts;
e.g., the following
dyn_bounds_cast<array_ptr<τ>>(e, count(n))

becomes 〈ptrc [n τ]〉e.
CORECHKC aims to be simple enough to work with, but

powerful enough to encode realistic Checked C idioms. For
example, mutable local variables can be encoded as immutable
locals that point to the heap; the use of & can be simulated
with malloc; and loops can be encoded as recursive function
calls. structs are not in Fig. 3 for space reasons, but they
are actually in our model, and developed in the supplemental
report [15]. C-style unions have no safe typing in Checked C,
so we omit them. By default, functions are assumed to be
within checked regions; placing the body in an unchecked

expression relaxes this, and within that, checked regions can
be nested via function calls. Bounds are restricted slightly:
rather than allowing arbitrary sub-expressions, bounds must
be either integer literals or variables plus an integer offset,
which accounts for most uses of bounds in Checked C pro-
grams. CORECHKC bounds are defined as relative offsets, not
absolute ones, as in the second part of Fig. 2. We see no
technical problem to modeling absolute bounds, but it would
be a pervasive change so we have not done so.

We have mechanized two models of CORECHKC, one in
Coq and one in PLT Redex [6], which is a semantic engi-
neering framework implemented in Racket. Redex provides
direct support for specifying the operational semantics and
typing with logical rules, but then automatically makes them
executable and subject to randomized testing, which is very
useful during development. The model we present in the
paper faithfully represents both mechanizations, but there are
some differences for presentation purposes. For example, the
paper and the Coq model use an explicit stack, whereas the
Redex model uses let bindings to simulate one (simplifying
term generation for randomized testing). The supplemental
report [15] outlines the differences between the two models
and the paper formalism.

B. Semantics

The operational semantics for CORECHKC is defined
as a small-step transition relation with the judgment
(ϕ,H , e) −→m (ϕ′,H ′, r). Here, ϕ is a stack mapping
from variables to values n : τ and H is a heap mapping
addresses (integer literals) to values n :τ ; for both we ensure
FV (τ) = ∅. While heap bindings can change, stack bindings
are immutable—once variable x is bound to n : τ in ϕ, that
binding will not be updated; we can model mutable stack
variables as pointers into the mutable heap. As mentioned,
value 0 : τ represents a null pointer when τ is a pointer
type; correspondingly, H (0) should always be undefined. The
relation steps to a result r, which is either an expression or

52

µ ::= n :τ | ⊥
e ::= . . . | ret(x, µ, e)
r ::= e | null | bounds
E ::= � | let x =E in e | f(E) | (τ)E | 〈τ〉E

| ret(x, n :τ , E) | E + e | n :τ + E | *E | *E = e

| *n :τ =E | unchecked E | if (E) e else e

E ::= E | n :τ, E | E, e

m = mode(E) e = E[e′] (ϕ,H , e′) −→ (ϕ′,H ′, e′′)
(ϕ,H , e) −→m (ϕ′,H ′, E[e′′])

m = mode(E) e = E[if (*x) e1 else e2]
(ϕ,H , if (*x) e1 else e2) −→ (ϕ′,H ′, e′)

(ϕ,H , e) −→m (ϕ′,H ′, E[e′])
[prefer]

Fig. 4: CORECHKC Semantics: Evaluation

a null or bounds failure, representing a null-pointer derefer-
ence or out-of-bounds access, respectively. Such failures are a
good outcome; stuck states (non-value expressions that cannot
transition to a result r) characterize undefined behavior. The
mode m indicates whether the stepped redex within e was in
a checked (c) or unchecked (u) region.

The rules for the main operational semantics judgment—
evaluation—are given at the bottom of Fig. 4. The first rule
takes an expression e, decomposes it into an evaluation context
E and a sub-expression e′ (such that replacing the hole � in E
with e′ would yield e), and then evaluates e′ according to the
computation relation (ϕ,H , e′) −→ (ϕ,H , e′′), whose rules
are given in Fig. 5, discussed shortly. The second rule handles
conditionals if (*x) e2 else e3 in redex position specially,
delegating directly to the S-IFNTT computation rule, which
supports bounds widening; we discuss this rule shortly. When
the second and first rules could both apply, we always prefer
the second.4 The mode function determines the mode when
evaluating e′ based on the context E: if the � occurs within
(unchecked E′) inside E, then the mode is u; otherwise,
it is c. Evaluation contexts E define a standard left-to-right
evaluation order. (We explain the ret(x, µ, e) syntax shortly.)

Fig. 5 shows selected rules for the computation relation; we
explain them with the help of the example in Fig. 6, which
defines a safe version of strcat (using actual Checked C
syntax). The function takes a target pointer dst of capacity
n, where the first null character (determined by strlen) is at
index x where 0 ≤x≤ n. It concatenates the src buffer to the
end of dst as long as dst has sufficient space.

Pointer accesses. The rules for dereference and assignment
operations—S-DEF, S-DEFNULL, S-DEFNTARRAY, and S-
ASSIGNARR—illustrate how the semantics checks bounds.
Rule S-DEFNULL transitions attempted null-pointer derefer-
ences to null, whereas S-DEF dereferences a non-null (single)
pointer. When null is returned by the computation relation,
the evaluation relation halts the entire evaluation with null

4This approach is that of the PLT Redex model of CORECHKC; the Coq
development uses a slightly simpler syntax to achieve the same effect.

(using a rule not shown in Fig. 4); it does likewise when
bounds is returned (see below).

S-ASSIGNARR assigns to an array as long as 0 (the point of
dereference) is within the bounds designated by the pointer’s
annotation and strictly less than the upper bound. For the
assignment rule, arrays are treated uniformly whether they are
null-terminated or not (κ can be · or nt)—the semantics does
not search past the current position for a null terminator. The
program can widen the bounds as needed, if they currently
precede the null terminator: S-DEFNTARRAY, which derefer-
ences an NT array pointer, allows an upper bound of 0, since
the program may read, but not write, the null terminator. A
separate rule (not shown) handles normal arrays.

Casts. Static casts of a literal n : τ ′ to a type τ are
handled by S-CAST. In a type-correct program, such casts
are confirmed safe by the type system. To evaluate a cast,
the rule updates the type annotation on n. Before doing so, it
must “evaluate” any variables that occur in τ according to their
bindings in ϕ. For example, if τ was ptrc [(0, x+ 3) int],
then ϕ(τ) would produce ptrc [(0, 5) int] if ϕ(x) = 2.

Dynamic casts are accounted for by S-DYNCAST and S-
DYNCASTBOUND. In a type-correct program, such casts are
assumed correct by the type system, and later confirmed by
the semantics. As such, a dynamic cast will cause a bounds

failure if the cast-to type is incompatible with the type of the
target pointer, as per the n′l > nl ∨ nh > n′h condition in S-
DYNCASTBOUND. An example use of dynamic casts is given
on line 7 in Fig. 6. The values of x and n might not be known
statically, so the type system cannot confirm that x ≤ n; the
dynamic cast assumes this inequality holds, but then checks it
at run-time.

Binding and Function Calls. The semantics handles vari-
able scopes using the special ret form. S-LET evaluates to a
configuration whose stack is ϕ extended with a binding for x,
and whose expression is ret(x, ϕ(x), e)) which remembers x
was previously bound to ϕ(x); if it had no previous binding,
ϕ(x) = ⊥. Evaluation proceeds on e until it becomes a literal
n : τ , in which case S-RET restores the saved binding (or ⊥)
in the new stack, and evaluates to n :τ .

Function calls are handled by S-FUN. Recall that array
bounds in types may refer to in-scope variables; e.g., parameter
dst’s bound count(n) refers to parameter n on lines 2-3 in
Fig. 6. A call to function f causes f ’s definition to be retrieved
from Ξ, which maps function names to forms τ (x :τ) e, where
τ is the return type, (x :τ) is the parameter list of variables and
their types, and e is the function body. The call is expanded
into a let which binds parameter variables x to the actual
arguments n, but annotated with the parameter types τ (this
will be safe for type-correct programs). The function body e
is wrapped in a static cast (τ [n/x]) which is the function’s
return type but with any parameter variables x appearing
in that type substituted with the call’s actual arguments n.
To see why this is needed, suppose that safe_strcat in
Fig. 6 is defined to return a nt_array_ptr<int>:count(n)

typed term, and assume that we perform a safe_strcat

function call as x=safe_strcat(a,b,10). After the eval-

53

S-DEF
H (n) = na :τa

(ϕ,H , *n :ptrm τ) −→ (ϕ,H , na :τ)

S-DEFNULL
(ϕ,H , *0:ptrc ω) −→ (ϕ,H , null)

S-DEFNTARRAY
H (n) = na :τa 0 ∈ [nl, nh]

(ϕ,H , *n :ptrc [(nl, nh) τ]nt) −→ (ϕ,H , na :τ)

S-ASSIGNARR
H (n) = na :τa 0 ∈ [nl, nh)

(ϕ,H , *n :ptrc [(nl, nh) τ]κ =n1 :τ1) −→ (ϕ,H [n 7→ n1 :τ], n1 :τ)

S-CAST
(ϕ,H , (τ)n :τ ′) −→ (ϕ,H , n :ϕ(τ))

S-DYNCAST
ϕ(ptrm [β τ]κ) = ptr

m [(n′l, n
′
h) τb]κ n′l ≤ nl nh ≤ n′h

(ϕ,H , 〈ptrm [β τ]κ〉n :ptrm [(nl, nh) τa]κ) −→ (ϕ′,H ′, n :ptrm [(n′l, n
′
h) τb]κ)

S-DYNCASTBOUND
ϕ(ptrc [β τ]κ) = ptr

c [(n′l, n
′
h) τb]κ n′l > nl ∨ nh > n′h

(ϕ,H , 〈ptrc [β τ]κ〉n :ptrc [(nl, nh) τa]κ) −→ (ϕ′,H ′, bounds)

S-LET
(ϕ,H , let x =n :τ in e) −→ (ϕ[x 7→ n :τ],H , ret(x, ϕ(x), e))

S-RET
(ϕ,H , ret(x, µ, n :τ)) −→ (ϕ[x 7→ µ],H , n :τ)

S-FUN
Ξ(f) = τ (x :τ) e

(ϕ,H , f(n :τa)) −→ (ϕ,H , let x = n : (τ [n/x]) in (τ [n/x])e)

S-STRWIDEN
ϕ(x) = n :ptrc [(nl, nh) τ] 0 ∈ [nl, nh] na > nh H (n+ na) = 0

(∀i.n ≤ i < n+ na ⇒ (∃ni ti.H (n+ i) = ni :τi ∧ ni 6= 0))

(ϕ,H , strlen(x)) −→ (ϕ[x 7→ n :ptrc [(nl, na) τ]],H , na :int)

S-IFNTT
ϕ(x) = n :ptrc [(nl, 0) τ]nt H (n) 6= 0

(ϕ,H , if (∗x) e1 else e2) −→ (ϕ[x 7→ n :ptrc [(nl, 1) τ]nt],H , e1)

Fig. 5: CORECHKC Semantics: Computation (Selected Rules)

1 nt_array_ptr<char> safe_strcat
2 (nt_array_ptr<char> dst : count(n),
3 nt_array_ptr<char> src : count(0), int n) {
4 int x = strlen(dst);
5 int y = strlen(src);
6 nt_array_ptr<char> c : count(n) =
7 dyn_bounds_cast
8 <nt_array_ptr<char>>(dst,count(n));
9 // sets c == dst with bound n (not x)

10 if (x+y < n) {
11 for (int i = 0; i < y; ++i)
12 *(c+x+i) = *(src+i);
13 *(c+x+y) = ’\0’;
14 return dst;
15 }
16 return null;
17 }

Fig. 6: Implementation of safe strcat

uation of safe_strcat, the function returns a value with
type nt_array_ptr<int>:count(10) because we substitute
bound variable n in the defined return type with 10 from
the function call’s argument list. Note that the S-FUN rule
replaces the annotations τa with τ (after instantiation) from
the function’s signature. Using τa when executing the body of
the function has no impact on the soundness of CORECHKC,
but will violate Theorem 4, which we introduce in Sec. IV.

Bounds Widening. Bounds widening occurs when branch-
ing on a dereference of a NT array pointer, or when performing
strlen. The latter is most useful when assigned to a local
variable so that subsequent code can use the result, e.g., e in
let x = strlen(y) in e. Lines 4 and 5 in Fig. 6 are exam-
ples. The widened upper bound precipitated by strlen(y) is
extended beyond the lifetime of x, as long as y is live. For
example, x’s scope in line 4 at runtime is the whole function
body in safe_strcat because the lifetime of the pointer dst
is in the function body. This is different from the Checked C
specification, which only allows bound widening to happen
within the scope of x, and restoring old bound values once x

dies. We allow widening to persist outside the scope at run-
time as long as we are within the stack frame, and we show
this does not necessarily require the use of fat pointers in
Sec. IV.

Rule S-STRWIDEN implements strlen widening. The
predicate ∀i.n ≤ i < n + na ⇒ (∃ni ti.H (n + i) = ni :
τi∧ni 6= 0)) aims to find a position n+na in the NT array that
stores a null character, where no character as indexes between
n and n+ na contains one. (This rule handles the case when
na > nh, the na ≤ nh case is handled by a normal strlen
rule; see the supplemental report [15].)

Rule S-IFNTT performs bounds widening on x when the
dereference *x is not at the null terminator, but the pointer’s
upper bound is 0 (i.e., it’s at the end of its known range). x’s

54

upper bound is incremented to 1, and this count persists as
long as x is live. For example, s’s increment (lines 5–8) is
live until the return of the function in Fig. 2; thus, line 11 is
valid because s’s upper bound is properly extended.

C. Typing

We now turn to the CORECHKC type system. The typing
judgment has the form Γ; Θ `m e : τ , which states that in a
type environment Γ (mapping variables to their types) and a
predicate environment Θ (mapping integer-typed variables to
Boolean predicates), expression e will have type τ if evaluated
in mode m. Key rules for this judgment are given in Fig. 7.
In the rules, m ≤ m′ uses the two-point lattice with u < c.
All remaining rules are given in the supplemental report [15].

Pointer Access. Rules T-DEFARR and T-ASSIGNARR
type-check array dereference and assignment operations resp.,
returning the type of pointed-to objects; rules for pointers to
single objects are similar. The condition m ≤ m′ ensures that
unchecked pointers can only be dereferenced in unchecked
blocks; the type rule for unchecked e sets m = u when
checking e. The rules do not attempt to reason whether the
access is in bounds; this check is deferred to the semantics.

Casting and Subtyping. Rule T-CAST rule forbids casting
to checked pointers when in checked regions (when m = c),
but τ is unrestricted when m = u. The T-CASTCHECKEDPTR
rule permits casting from an expression of type τ ′ to a checked
pointer when τ ′ v ptrc τ . This subtyping relation v is given
in Fig. 8; the many rules ensure the relation is transitive. Most
of the rules handle casting between array pointer types. The
second rule 0 ≤ bl ∧ bh ≤ 1 ⇒ ptrm τ v ptrm [(bl, bh) τ]
permits treating a singleton pointer as an array pointer with
bh ≤ 1 and 0 ≤ bl.

Since bounds expressions may contain variables, determin-
ing assumptions like bl ≤ b′l requires reasoning about those
variables’ possible values. The type system uses Θ to make
such reasoning more precise.5 Θ is a map from variables x to
predicates P , which have the form P ::= > | ge 0. If Θ maps
x to >, that means that the variable can possibly be any value;
ge 0 means that x ≥ 0. We will see how Θ gets populated
and give a detailed example of subtyping below.6

Rule T-DYNCAST typechecks dynamic casting operations,
which apply to array pointer types only. The cast is accepted
by the type system, as its legality will be checked by the
semantics.

Bounds Widening. The bounds of NT array pointers may
be widened at conditionals, and calls to strlen. Rule T-IF
handles normal branching operations; rule T-IFNT is special-
ized to the case of branching on *x when x is a NT array
pointer whose upper bound is 0. In this case, true-branch e1
is checked with x’s type updated so that its upper bound is

5Technically, the subtyping relation v and the bounds ordering relation ≤
are parameterized by Θ; this fact is implicit to avoid clutter.

6As it turns out, the subtyping relation is also parameterized by ϕ, which
is needed when type checking intermediate results to prove type preservation;
source programs would always have ϕ = ∅. Details are in the supplemental
report [15].

incremented by 1; the else-branch e2 is type-checked under the
existing assumptions. For both rules, the resulting type is the
join of the types of the two branches (according to subtyping).
This is important for the situation when x itself is part of the
result, since x will have different types in the two branches.

Rule T-STR handles the case for when strlen(y) does
not appear in a let binding. Rule T-LETSTR handles the case
when it does, and performs bounds widening. The result of
the call is stored in variable x, and the type of y is updated
in Γ when checking the let-body e to indicate that x is y’s
upper bound. Notice that the lower bound bl is unaffected by
the call to strlen(y); this is sound because we know that
strlen will always return a result n such that n ≥ bh, the
current view of x’s upper bound. The type rule tracks strlen’s
widened bounds within the scope of x, while the bound-
widening effect in the semantics applies to the lifetime of y.
Our type preservation theorem in Sec. III-D shows that our
type system is a sound model of the CORECHKC semantics,
and we discuss how we guarantee that the behavior of our
compiler formalization and the semantics matches in Sec. IV.

This rule also extends Θ when checking e, adding a pred-
icate indicating that x ≥ 0. To see how this information is
used, consider this example. The return on line 14 of Fig. 6
has an implicit static cast from the returned expression to the
declared function type (see rule T-FUN, described below). In
type checking the strlen on line 4, we insert a predicate in
Θ showing x ≥ 0. The static cast on line 14 is valid according
to the last line in Fig. 8:

ptr
c [(0, x) τ]κ v ptr

c [(0, 0) τ]κ

because 0 ≤ 0 and 0 ≤ x, where the latter holds since Θ
proves x ≥ 0. Without Θ, we would need a dynamic cast.

In our formal presentation, Θ is quite simple and is just
meant to illustrate how static information can be used to avoid
dynamic checks; it is easy to imagine richer environments of
facts that can be leveraged by, say, an SMT solver as part of
the subtyping check [22, 26].

Dependent Functions and Let Bindings. Rule T-FUN is
the standard dependent function call rule. It looks up the
definition of the function in the function environment Ξ,
type-checks the actual arguments e which have types τ ′,
and then confirms that each of these types is a subtype of
the declared type of f ’s corresponding parameter. Because
functions have dependent types, we substitute each parameter
ei for its corresponding parameter xi in both the parameter
types and the return type. Consider the safe_strcat function
in Fig. 6; its parameter type for dst depends on n. The T-FUN
rule will substitute n with the argument at a call-site.

Rule T-LET types a let expression, which also admits type
dependency. In particular, the result of evaluating a let may
have a type that refers to one of its bound variables (e.g., if
the result is a checked pointer with a variable-defined bound);
if so, we must substitute away this variable once it goes out of
scope. Note that we restrict the expression e1 to syntactically
match the structure of a Bounds expression b (see Fig. 3).

55

T-DEFARR
m ≤ m′

Γ; Θ `m e : ptrm
′

[β τ]κ

Γ; Θ `m *e : τ

T-ASSIGNARR

Γ; Θ `m e1 : ptrm
′

[β τ]κ
Γ; Θ `m e2 : τ ′ τ ′ v τ m ≤ m′

Γ; Θ `m *e1 = e2 : τ

T-UNCHECKED
Γ; Θ `u e : τ

Γ; Θ `m unchecked e : τ

T-CAST
m = c⇒ τ 6= ptr

c τ ′′ for any τ ′′

Γ; Θ `m e : τ ′

Γ; Θ `m (τ)e : τ

T-CASTCHECKEDPTR
Γ; Θ `m e : τ ′ τ ′ v ptr

c τ

Γ; Θ `m (ptrc τ)e : ptrc τ

T-DYNCAST
Γ; Θ `m e : ptrm [β′ τ]κ

Γ; Θ `m 〈ptrm [β τ]κ〉e : ptrm [β τ]κ

T-IF
Γ; Θ `m e : τ

Γ; Θ `m e1 : τ1
Γ; Θ `m e2 : τ2

Γ; Θ `m if (e) e1 else e2 : τ1 t τ2

T-IFNT
Γ; Θ `m x : ptrc [(bl, 0) τ]nt

Γ[x 7→ ptr
c [(bl, 1) τ]nt]; Θ `m e1 : τ1
Γ; Θ `m e2 : τ2

Γ; Θ `m if (*x) e1 else e2 : τ1 t τ2

T-STR
Γ; Θ `m e : ptrm [β τa]nt

Γ; Θ `m strlen(e) : int

T-LETSTR
Γ(y) = ptr

c [(bl, bh) τa]nt x 6∈ FV (τ)
Γ[x 7→ int, y 7→ [ptrc [(bl, x) τa]nt]; Θ[x 7→ ge 0] `m e : τ

Γ; Θ `m let x = strlen(y) in e : τ

T-LET
x ∈ FV (τ ′)⇒ e1 ∈ Bound

Γ; Θ `m e1 : τ Γ[x 7→ τ]; Θ `m e2 : τ ′

Γ; Θ `m let x = e1 in e2 : τ ′[e1/x]

T-FUN
Ξ(f) = τ (x : τ) e Γ; Θ `m e : τ ′ τ ′ v τ [e/x]

Γ; Θ `m f(e) : τ [e/x]

T-RET
Γ(x) 6= ⊥ Γ; Θ `m e : τ

Γ; Θ `m ret(x, µ, e) : τ

Fig. 7: Selected type rules

τ v τ

0 ≤ bl ∧ bh ≤ 1 ⇒ ptrm τ v ptrm [(bl, bh) τ]

bl ≤ 0 ∧ 1 ≤ bh ⇒ ptrm [(bl, bh) τ] v ptrm τ

bl ≤ 0 ∧ 1 ≤ bh ⇒ ptrm [(bl, bh) τ]nt v ptrm τ

bl ≤ b′l ∧ b′h ≤ bh ⇒ ptrm [(bl, bh) τ]nt v ptrm [(b′l, b
′
h) τ]

bl ≤ b′l ∧ b′h ≤ bh ⇒ ptrm [(bl, bh) τ]κ v ptrm [(b′l, b
′
h) τ]κ

Fig. 8: Subtyping

Rule T-RET types a ret expression, which does not appear
in source programs but is introduced by the semantics when
evaluating a let binding (rule S-LET in Fig. 5); this rule is
needed for the preservation proof. After the evaluation of a let
binding a variable x concludes, we need to restore any prior
binding of x, which is either ⊥ (meaning that there is no x
originally) or some value n :τ .

D. Type Soundness and Blame

In this subsection, we focus on our main meta-theoretic re-
sults about CORECHKC: type soundness (progress and preser-
vation) and blame. These proofs have been carried out in our
Coq model, found at https://github.com/plum-umd/checkedc.

The type soundness theorems rely on several notions of
well-formedness:

Definition 1 (Type Environment Well-formedness): A type
environment Γ is well-formed iff every variable mentioned as
type bounds in Γ are bounded by nat typed variables in Γ.

Definition 2 (Heap Well-formedness): A heap H is well-
formed iff (i) H (0) is undefined, and (ii) for all n : τ in the
range of H , type τ contains no free variables.

Definition 3 (Stack Well-formedness): A stack snapshot ϕ is
well-formed iff for all n :τ in the range of ϕ, type τ contains
no free variables.

We also need to introduce a notion of consistency, relating
heap environments before and after a reduction step, and type
environments, predicate sets, and stack snapshots together.

Definition 4 (Stack Consistency): A type environment Γ,
variable predicate set Θ, and stack snapshot ϕ are consistent—
written Γ; Θ ` ϕ—iff for every variable x, Θ(x) is defined
implies Γ(x) = τ for some τ and ϕ(x) = n :τ ′ for some n, τ ′

where τ ′ v τ .
Definition 5 (Stack-Heap Consistency): A stack snapshot

ϕ is consistent with heap H —written H ` ϕ—iff for every
variable x, ϕ(x) = n :τ implies H ; ∅ ` n : τ .

Definition 6 (Heap-Heap Consistency): A heap H ′ is con-
sistent with H —written H . H ′—iff for every constant n,
H ; ∅ ` n : τ implies H ′; ∅ ` n : τ .

Moreover, as a program evaluates, its expression may con-
tain literals n :τ where τ is a pointer type, i.e., n is an index
in H (perhaps because n was chosen by malloc). The nor-
mal type-checking judgment for e is implicitly parameterized
by H , and the rules for type-checking literals confirm that
pointed-to heap cells are compatible with (subtypes of) the
pointer’s type annotation; in turn this check may precipitate
checking the type consistency of the heap itself. We follow
the same approach as Ruef et al. [23], and show the rules
in Fig. 9; the judgment H ;σ ` n : τ is used to confirm

56

Type rules for constants and variables:

T-VAR
x : τ ∈ Γ

Γ; Θ `m x : τ

T-CONST
FV (τ) = ∅ H ; ∅ ` n : τ

Γ; Θ `m n :τ : τ

Rules for checking constant pointers:

H ;σ ` n : int H ;σ ` n : ptru ω H ;σ ` 0 : ptrc ω

(n :ptrc ω) ∈ σ
H ;σ ` n : ptrc ω

∀i ∈ [0, size(ω)).H ; (σ ∪ {(n : ptrc ω))} ` H (n+ i)

H ;σ ` n : ptrc ω

Fig. 9: Type Rules for Constants/Variables

literal well-typing, where σ is a set of pointer literals already
checked in H (to allow pointer cycles). See the supplemental
report [15] for further discussion.

Progress now states that terms that don’t reduce are either
values or their mode is unchecked:

Theorem 1 (Progress):
For any Checked C program e, heap H , stack ϕ, type

environment Γ, and variable predicate set Θ that are all are
well-formed, consistent (Γ; Θ ` ϕ and H ` ϕ) and well typed
(Γ; Θ `c e : τ for some τ), one of the following holds:
• e is a value (n :τ).
• there exists ϕ′ H ′ r, such that (ϕ,H , e) −→m (ϕ′,H ′, r).
• m = u, or there exists E and e′, such that e = E[e′] and

mode(E) = u.
Proof: By induction on the typing derivation.
Preservation states that a reduction step preserves both the type
and consistency of the program being reduced.

Theorem 2 (Preservation): For any Checked C program e,
heap H , stack ϕ, type environment Γ, and variable predicate
set Θ that are all are well-formed, consistent (Γ; Θ ` ϕ and
H ` ϕ) and well typed (Γ; Θ `c e : τ for some τ), if there
exists ϕ′, H ′ and e′, such that (ϕ,H , e) −→c (ϕ′,H ′, e′), then
H ′ is consistent with H (H . H ′) and there exists Γ′, Θ′ and
τ ′ that are well formed, consistent (Γ′; Θ′ ` ϕ′ and H ′ ` ϕ′)
and well typed (Γ′; Θ′ `c e : τ ′), where τ ′ v τ .
Proof: By induction on the typing derivation.

Using these two theorems we can prove our main result,
blame, which states that if a well-typed program is stuck—
expression e is a non-value that cannot take a step7—the
cause must be the (past or imminent) execution of code in
an unchecked region.

Theorem 3 (The Blame Theorem): For any Checked C
program e, heap H , stack ϕ, type environment Γ, and variable
predicate set Θ that are well-formed and consistent (Γ; Θ ` ϕ
and H ` ϕ), if e is well-typed (ϕ; Θ `c e : τ for some τ)
and there exists ϕi, Hi, ei, and mi for i ∈ [1, k], such that

7Note that bounds and null are not stuck expressions—they represent a
program terminated by a failed run-time check. A program that tries to access
H n but H is undefined at n will be stuck, and violates spatial safety.

(ϕ,H , e) −→m1 (ϕ1,H1, e1) −→m2 ... −→mk
(ϕk,Hk, r)

and r is stuck, then there exists j ∈ [1, k], such that mj = u,
or there exists E and e′, such that r = E[e′] and mode(E) = u.
Proof: By induction on the number of steps of the Checked C
evaluation (−→∗m), using progress and preservation to main-
tain the invariance of the assumptions.

Compared to Ruef et al. [23], proofs for CORECHKC
were made challenging by the addition of dependently typed
functions and dynamic arrays, and the need to handle bounds
widening for NT array pointers. These features required
changes in the runtime semantics (adding a stack, and dy-
namically changing bounds) and in compile-time knowledge
of them (to soundly typing widened bounds).

IV. COMPILATION

The semantics of CORECHKC uses annotations on pointer
literals in order to keep track of array bounds information,
which is used in premises of rules like S-DEFARRAY and
S-ASSIGNARR to prevent spatial safety violations. However,
in the real implementation of Checked C, which extends
Clang/LLVM, these annotations are not present—pointers are
represented as a single machine word with no extra metadata,
and bounds checks are not handled by the machine, but
inserted by the compiler.

This section shows how CORECHKC annotations can be
safely erased: using static information a compiler can in-
sert code to manage and check bounds metadata, with no
loss of expressiveness. We present a compilation algorithm
that converts from CORECHKC to COREC, an untyped lan-
guage without metadata annotations. The syntax and semantics
COREC closely mirrors that of CORECHKC; it differs only
in that literals lack type annotations and its operational rules
perform no bounds and null checks, which are instead inserted
during compilation. Our compilation algorithm is evidence
that CORECHKC’s semantics, despite its apparent use of fat
pointers, faithfully represents Checked C’s intended behavior.
The algorithm also sheds light on how compilation can be
implemented in the real Checked C compiler, while eschewing
many important details (COREC has many differences with
LLVM IR).

Compilation is defined by extending CORECHKC’s typing
judgment thusly:

Γ; Θ; ρ `m e� ė : τ

There is now a COREC output ė and an input ρ, which maps
each nt_array_ptr variable p to a pair of shadow variables
that keep p’s up-to-date upper and lower bounds; these may
differ from the bounds in p’s type due to bounds widening.8

We formalize rules for this judgment in PLT Redex [6], fol-
lowing and extending our Coq development for CORECHKC.
To give confidence that compilation is correct, we use Redex’s
property-based random testing support to show that compiled-
to ė simulates e, for all e.

8Since lower bounds are never widened, the lower-bound shadow variable
is unnecessary; we include it for uniformity.

57

1 /* p : ptrc [(0, 0) int]nt */
2 /* ρ(p) = p_lo,p_hi */
3 {
4 let x = strlen(p);
5 if (x > 1) putchar(*(p+1));
6 }

1 {
2 assert(p_lo ≤ 0 && 0 ≤ p_hi); // bounds check
3 assert(p != 0); // null check
4 let x = strlen(p);
5 let p_hi_new = x;
6 p_hi = max(p_hi, p_hi_new);
7 if (x > 1) {
8 assert(p != 0); // null check for p + 1
9 let p_1 = p + 1;

10 assert(p_lo ≤ 1 && // bounds check for p + 1
11 1 ≤ p_hi);
12 putchar(*p_1);
13 }
14 }

Fig. 10: Compilation Example for Check Insertions

A. Approach

Due to space constraints, we explain the rules for com-
pilation by example, using a C-like syntax; the complete
rules are given in the supplemental report [15]. Each rule
performs up to three tasks: (a) conversion of e to A-normal
form; (b) insertion of dynamic checks; and (c) insertion of
bounds widening expressions. A-normal form conversion is
straightforward: compound expressions are handled by storing
results of subexpressions into temporary variables, as in the
following example.

let y=(x+1)+(6+1)
let a=x+1;
let b=6+1;
let y=a+b

This simplifies the management of effects from subexpres-
sions. The next two steps of compilation are more interesting.

During compilation, Γ tracks the lower and upper bound
associated with every pointer variable according to its type. At
each declaration of a nt_array_ptr variable p, the compiler
allocates two shadow variables, stored in ρ(p); these are
initialized to p’s declared bounds and will be updated during
bounds widening.9 Fig. 10 shows how an invocation of strlen
on a null-terminated string is compiled into C code. Each
dereference of a checked pointer requires a null check (See
S-DEFNULL in Fig. 5), which the compiler makes explicit:
Line 3 of the generated code has the null check on pointer
p due to the strlen, and a similar check happens at line 8
due to the pointer arithmetic on p. Dereferences also require
bounds checks: line 2 checks p is in bounds before computing
strlen(p), while line 10 does likewise before computing
*(p+1).

9Shadow variables are not used for array_ptr types (the bounds expres-
sions are) since they are not subject to bounds widening.

1 int deref_array(n : int,
2 p : ptrc [(0, n) int]nt) {
3 /* ρ(p) = p_lo,p_hi */
4 if (* p)
5 (* (p + 1))
6 else 0
7 }
8 ...
9 /* p0 : ptrc [(0, 5) int]nt */

10 deref_array(5, p0);

1 deref_array(n, p) {
2 let p_lo = 0;
3 let p_hi = n;
4 /* runtime checks */
5 assert(p_lo ≤ 0 && 0 ≤ p_hi);
6 assert(p != 0);
7 let p_derefed = *p;
8 if (p_derefed != 0) {
9 /* widening */

10 if (p_hi == 0) {
11 p_hi = p_hi + 1;
12 }
13 /* null check before pointer arithmetic */
14 assert(p != 0);
15 let p0 = p + 1;
16 assert(p_lo ≤ 1 && 1 ≤ p_hi);
17 (* p0)
18 }
19 else {
20 0
21 }
22 }
23 ...
24 deref_array(5, p0);

Fig. 11: Compilation Example for Dependent Functions

For strlen(p) and conditionals if(*p), the CORECHKC
semantics allows the upper bound of p to be extended. The
compiler explicitly inserts statements to do so on p’s shadow
bound variables. For example, Fig. 10 line 6 widens p’s upper
bound if strlen’s result is larger than the existing bound.
Lines 7–12 of the generated code in Fig. 11 show how bounds
are widened when compiling expression if(*p). If we find
that the current p’s relative upper bound is equal to 0 (line
10), and p’s content is not null (line 8), we then increase the
upper bound by 1 (line 11).

Fig. 11 also shows a dependent function call. Notice that
the bounds for the array pointer p are not passed as arguments.
Instead, they are initialized according to p’s type—see line 3
of the original CORECHKC program at the top of the figure.
Line 2 of the generated code sets the lower bound to 0 and
line 3 sets the upper bound to n.

B. Comparison with Checked C Specification

The use of shadow variables for bounds widening is a key
novelty of our compilation approach, and adds more preci-
sion to bounds checking at runtime compared to the official

58

1 nt_array_ptr<char> safe_strcat_c
2 (nt_array_ptr<char> dst : count(n),
3 nt_array_ptr<char> src : count(0), int n) {
4 nt_array_ptr<char> tmp : count(n) = dst;
5 int x = strlen(tmp);
6 /* tmp now has x as its upper bound */
7 /* dst still has n as its upper bound */
8 int y = strlen(src);
9

10 if (x+y < n) {
11 for (int i = 0; i < y; ++i)
12 *(dst+x+i) = *(src+i);
13 *(dst+x+y) = ’\0’;
14 return dst;
15 }
16 return null;
17 }

Fig. 12: Safe strcat in Checked C that avoids a run-time
error exhibited by safe_strcat (Fig. 6) when compiled with
the current Checked C compiler

specification and current implementation of Checked C [25,
5.1.2, pg 85]. For example, the safe_strcat example of
Fig. 6 compiles with the current Clang Checked C compiler
but will fail with a runtime error. The statement int x

= strlen(dst) at line 4 changes the statically determined
upper bound of dst to x, which can be smaller than n, the
full capacity of dst. The attempt to recover the full capacity
of dst through a dynamic cast at line 7 will always fail if
the capacity n is checked against the statically determined
new upper bound x. This problem can be worked around
by invoking strlen on a temporary variable tmp instead of
dst as in safe_strcat_c in Fig. 12 (lines 4-5). Likewise, if
we were to add line putchar(*(p+1)); after line 6 in the
original code at the top of Fig. 10, the code will always fail:
the Clang Checked C compiler (with the transliterated C code
as its input) would check p against its original bounds (0,0)
since the updated upper bound x is now out of the scope.
Shadow variables address these problems because they retain
widened bounds beyond the scope of variables that store them
(i.e., x in both examples).

To make it match the specification, our compilation defini-
tion could easily eschew shadow variables and rely only on
the type-based bounds expressions available in Γ for checking.
However, doing so would force us to weaken the simulation
theorem, reduce expressiveness, and/or force the semantics to
be more awkward. We plan to work with the Checked C team
to implement our approach in a future revision.

C. Metatheory

We formalize both the compilation procedure and the sim-
ulation theorem in the PLT Redex model we developed for
CORECHKC (see Sec. III-A), and then attempt to falsify it
via Redex’s support for random testing. Redex allows us to
specify compilation as logical rules (essentially, an extension
of typing), but then execute it algorithmically to automatically

test whether simulation holds. This process revealed several
bugs in compilation and the theorem statement. We ultimately
plan to prove simulation in the Coq model.

We use the notation � to indicate the erasure of stack and
heap—the rhs is the same as the lhs but with type annotations
removed:

H �Ḣ
ϕ�ϕ̇

In addition, when Γ; ∅ ` ϕ and ϕ is well-formed, we write
(ϕ,H , e) � (ϕ̇, Ḣ , ė) to denote ϕ � ϕ̇, H � Ḣ and
Γ; Θ; ∅ ` e� ė : τ for some τ respectively. Γ is omitted from
the notation since the well-formedness of ϕ and its consistency
with respect to Γ imply that e must be closed under ϕ, allowing
us to recover Γ from ϕ. Finally, we use ·−→

∗
to denote the

transitive closure of the reduction relation of COREC. Unlike
the CORECHKC, the semantics of COREC does not distinguish
checked and unchecked regions.

Fig. 13 gives an overview of the simulation theorem.10 The
simulation theorem is specified in a way that is similar to the
one by Merigoux et al. [18]. An ordinary simulation property
would replace the middle and bottom parts of the figure with
the following:

(ϕ̇0, Ḣ0, ė0)
·−→
∗

(ϕ̇1, Ḣ1, ė1)

Instead, we relate two erased configurations using the re-
lation ∼, which only requires that the two configurations
will eventually reduce to the same state. We formulate our
simulation theorem differently because the standard simulation
theorem imposes a very strong syntactic restriction to the
compilation strategy. Very often, (ϕ̇0, Ḣ0, ė0) reduces to a
term that is semantically equivalent to (ϕ̇1, Ḣ1, ė1), but we
are unable to syntactically equate the two configurations due
to the extra binders generated for dynamic checks and ANF
transformation. In earlier versions of the Redex model, we
attempted to change the compilation rules so the configura-
tions could match syntactically. However, the approach scaled
poorly as we added additional rules. This slight relaxation on
the equivalence relation between target configurations allows
us to specify compilation more naturally without having to
worry about syntactic constraints.

Theorem 4 (Simulation (∼)): For CORECHKC expressions
e0, stacks ϕ0, ϕ1, and heap snapshots H0, H1, if H0 ` ϕ0,
(ϕ0,H0, e0) � (ϕ̇0, Ḣ0, ė0), and if there exists some r1 such
that (ϕ0,H0, e0) →c (ϕ1,H1, r1), then the following facts
hold:
• if there exists e1 such that r = e1 and (ϕ1,H1, e1) �

(ϕ̇1, Ḣ1, ė1), then there exists some ϕ̇,Ḣ , ė, such that
(ϕ̇0, Ḣ0, ė0)

·−→
∗

(ϕ̇, Ḣ , ė) and (ϕ̇1, Ḣ1, ė1)
·−→
∗

(ϕ̇, Ḣ , ė).
• if r1 = bounds or null, then we have (ϕ̇0, Ḣ0, ė0)

·−→
∗

(̇̇ϕ1, Ḣ1, r1) where ϕ1 � ϕ̇1, H1 � Ḣ1.
Our random generator (discussed in the next section) never

produces unchecked expressions (whose behavior could be

10We ellide the possibility of ė1 evaluating to bounds or null in the
diagram for readability.

59

ϕ0,H0, e0 ϕ1,H1, e1

ϕ̇0, Ḣ0, ė0 ϕ̇1, Ḣ1, ė1

ϕ̇, Ḣ , ė

−→c

� �

∼

·−→
∗ ·−→

∗

Fig. 13: Simulation between CORECHKC and COREC

undefined), so we can only test a the simulation theorem as it
applies to checked code. This limitation makes it unnecessary
to state the other direction of the simulation theorem where
e0 is stuck, because Theorem 1 guarantees that e0 will never
enter a stuck state if it is well-typed in checked mode.

The current version of the Redex model has been tested
against 20000 expressions with depth less than 10. Each
expression can reduce multiple steps, and we test simulation
between every two adjacent steps to cover a wider range of
programs, particularly the ones that have a non-empty heap.

V. RANDOM TESTING VIA THE IMPLEMENTATION

In addition to using the CORECHKC Redex model to
establish simulation of compilation (Section IV-C), we also
used it to gain confidence that our model matches the Clang
Checked C implementation. Disagreement on outcomes sig-
nals a bug in either the model or the compiler itself. Doing so
allowed us to quickly iterate on the design of the model while
adding new features, and revealed several bugs in the Clang
Checked C implementation.

Generating Well Typed Terms. For this random genera-
tion, we follow the approach of Pałka et al. [21] to generate
well-typed Checked C terms by viewing the typing rules as
generation rules. Suppose we have a context Γ, a mode m and
a type τ , and we are trying to generate a well-typed expression.
We can do that by reversing the process of type checking,
selecting a typing rule and building up an expression in a way
that satisfies the rule’s premises.

Recall the typing rule for dereferencing an array pointer,
which we depict below as G-DEFARR11, color-coded to rep-
resent inputs and outputs of the generation process:12

G-DEFARR

Γ; Θ `m e : ptrm
′

[β τ]κ m ≤ m′

Γ; Θ `m *e : τ

If we selected G-DEFARR for generating an expression, the
generated expression has to have the form ∗e, for some e,
to be generated according to the rule’s premises. To satisfy
the premise Γ; Θ `m e : ptrm

′
[β τ]κ, we essentially need

11Generator rules G-* correspond one to one with the type rules T-* in
Sec. III-C.

12This input-output marking is commonly called a mode in the literature,
but we eschew this term to avoid confusion with our pointer mode annotation.

to make a recursive call to the generator, with appropriately
adjusted inputs. However, the type in this judgment is not fixed
yet—it contains three unknown variables: m′, β, and κ—that
need to be generated before making the call. Looking at the
second premise informs that generation: if the input mode m is
u, then m′ needs to be u as well; if not, it is unconstrained, just
like β and κ, and therefore all three are free to be generated
at random. Thus, the recursive call to generate e can now be
made, and the G-DEFARR rule returns ∗e as its output.

Using such generator rules, we can create a generator for
random well-typed terms of a given type in a straightforward
manner: find all rules whose conclusion matches the given
type and then randomly choose a candidate rule to perform the
generation. To ensure that this process terminates, we follow
the standard practice of using “fuel” to bound the depth of the
generated terms; once the fuel is exhausted, only rules without
recursive premises are selected [12]. Similar methods were
used for generating top level functions and struct definitions.

While using just the typing-turned-generation rules is in
theory enough to generate all well-typed terms, it’s more
effective in practice to try and exercise interesting patterns.
As in Pałka et al. [21] this can be viewed as a way of adding
admissible but redundant typing rules, with the sole purpose
of using them for generation. For example, below is one such
rule, G-ASTR, which creates an initialized null-terminated
string that is statically cast into an array with bounds (0, 0).

G-ASTR
i ∈ N∗ n0, . . . , ni−1 ∈ Z fresh(x)

Γ `m e′ : ptrc [(0, i) int]nt
e = let x = e′ in (init x with n0, . . . ni−1);x

Γ `m (ptrc [(0, 0) int]nt)e : ptrc [(0, 0) int]nt

Given some positive number i, numbers n0, . . . , ni−1, and
a fresh variable x (which are arbitrarily generated), we can
recursively generate a pointer e′ with bounds (0, i), and
initialize it with the generated nj using x to temporarily store
the pointer.

This rule is particularly useful when combined with G-
IFNT since there is a much higher chance of obtaining a non-
zero value when evaluating *p in the guard of if, skewing
the distribution towards programs that enter the then branch.
Relying solely on the type-based rules, entering the then

branch requires that G-ASSIGNARR was chosen before G-
IFNT, and that assignment would have to appear before if,
which means additional G-LET rules would need to be chosen:
this combination would therefore be essentially impossible to
generate in isolation.

Adding admissible generation rules like G-ASTR in this
manner, as described in Pałka et al. [21], is a manual process.
It is guided by gathering statistics on the generated data and
focusing on language constructs that appear underrepresented
in the posterior distribution. For example, we arrived at the G-
ASTR rule by recognizing that the pure type-based generation
was not generating non-trivial null-terminated strings, and then
analyzing the sequence of random choices that could lead to
their generation.

60

Generating Ill-typed Terms. We can use generated well-
typed terms to test our simulation theorem (Section IV) and
test that CORECHKC and Checked C Clang agree on what
is type-correct. But it is also useful to generate ill-typed
terms to test that CORECHKC and Checked C Clang also
agree on what is not. However, while it is easy to generate
arbitrary ill-typed terms, they would be very unlikely to trigger
any inconsistencies; those are far more likely to exist on
the boundary between well- and ill-typedness. Therefore, we
also manually added variations of existing generation rules
modified to be slightly more permissive, e.g., by relaxing a
single premise, thus allowing terms that are “a little” ill-typed
to be generated. Unlike coming up with admissible generation
rules like G-ASTR (which is quite challenging to automate),
systematically and automatically relaxing premises of existing
rules seems feasible, and worthwhile future work.

Random Testing for Language Design. We used our
Redex model and random generator to successfully guide the
design of our formal model, and indeed the Clang Checked
C implementation itself, which is being actively developed.
To that end, we implemented a conversion tool that converts
CORECHKC into a subset of the Checked C language and
ensured that model and implementation exhibit the same
behavior (accept and reject the same programs and yield the
same return value).

This approach constitutes an interesting twist to traditional
model-based checking approaches. Usually, one checks that
the implementation and model agree on all inputs of the
implementation, with the goal of covering as many behaviors
as possible. This is the case, for example, in Guha et al. [8],
where they use real test suites to demonstrate the faithfullness
of their core calculus to Javascript. Our approach and goal in
this work is essentially the opposite: as the Clang Checked C
implementation does not fully implement the Checked C spec,
there is little hope of covering all terms that are generated by
Clang Checked C. Instead, we’re looking for inconsistencies,
which could be caused by bugs either in the Clang Checked
C compiler or our own model.

One inconsistency we found comes from the following:

1 array_ptr<char> fun(void) : count(3) {
2 array_ptr<char> x : count(3);
3 x = calloc(3, sizeof(char));
4 return x+3;
5 }
6 int main(void) {
7 *(fun()) = 0;
8 return 0;
9 }

In this code, the function fun is supposed to return a checked
array pointer of size 3. Internally, it allocates such an array, but
instead of returning the pointer x to that array, it increments
that pointer by 3. Then, the main function just calls fun,
and tries to assign 0 to its result. Our model correctly rules
out this program, while the Clang Checked C implementation
happily accepted this out-of-bounds assignment. Interestingly,
it correctly rejected programs where the array had size 1 or 2.

This inconsistency has been fixed in the latest version of the
compiler.

We also found the opposite kind of inconsistency—
programs that the Clang Checked C implementation rejects
contrary to the spec. For instance:13

1 array_ptr<int> f(void) : count(5) {
2 array_ptr<int> x : count(5) =
3 calloc<int>(5, sizeof(int));
4 return x;
5 }
6 array_ptr<int> g(void) : count(5) {
7 array_ptr<int> x : count(5) =
8 calloc<int>(5, sizeof(int));
9 return x+3;

10 }
11 int main(void) {
12 return *(0 ? g() : f() + 3);
13 }

In this piece of code both f and g functions compute a pointer
to the same index in an array of size 5 (as f calls g). The main
function then creates a ternary expression whose branches call
f and g, but the Clang Checked C implementation rejects this
program, as its static analysis is not sophisticated enough to
detect that both branches have the same type.

VI. RELATED WORK

Our work is most closely related to prior formalizations of
C(-like) languages that aim to enforce memory safety, but it
also touches on C-language formalization in general.

Formalizing C and Low-level code. A number of prior
works have looked at formalizing the semantics of C, including
CompCert [1, 14], Ellison and Rosu [5], Kang et al. [11], and
Memarian et al. [16, 17]. These works also model pointers
as logically coupled with either the bounds of the blocks
they point to, or provenance information from which bounds
can be derived. None of these is directly concerned with
enforcing spatial safety, and that is reflected in the design.
For example, memory itself is not be represented as a flat
address space, as in our model or real machines, so memory
corruption due to spatial safety violations, which Checked C’s
type system aims to prevent, may not be expressible. That said,
these formalizations consider much more of the C language
than does CORECHKC, since they are interested in the entire
language’s behavior.

Spatially Safe C Formalizations. Several prior works
formalize C-language transformations or C-language dialects
aiming to ensure spatial safety. Hathhorn et al. [9] extends the
formalization of Ellison and Rosu [5] to produce a semantics
that detects violations of spatial safety (and other forms of
undefinedness). It uses a CompCert-style memory model, but
“fattens” logical pointer representations to facilitate adding
side conditions similar to CORECHKC’s. Its concern is bug
finding, not compiling programs to use this semantics.

CCured [20] and Softbound [19] implement spatially safe
semantics for normal C via program transformation. Like

13After minimization, this turned out to be a known issue: https://github.
com/microsoft/checkedc-clang/issues/1008

61

CORECHKC, both systems’ operational semantics annotate
pointers with their bounds. CCured’s equivalent of array
pointers are compiled to be “fat,” while SoftBound compiles
bounds metadata to a separate hashtable, thus retaining binary
compatibility at higher checking cost. Checked C uses static
type information to enable bounds checks without need of
pointer-attached metadata, as we show in Section IV. Neither
CCured nor Softbound models null-terminated array pointers,
whereas our semantics ensures that such pointers respect
the zero-termination invariant, leveraging bounds widening to
enhance expressiveness.

Cyclone [7, 10] is a C dialect that aims to ensure memory
safety; its pointer types are similar to CCured. Cyclone’s for-
malization [7] focuses on the use of regions to ensure temporal
safety; it does not formalize arrays or threats to spatial safety.
Deputy [2, 29] is another safe-C dialect that aims to avoid
fat pointers; it was an initial inspiration for Checked C’s
design [4], though it provides no specific modeling for null-
terminated array pointers. Deputy’s formalization [2] defines
its semantics directly in terms of compilation, similar in style
to what we present in Section IV. Doing so tightly couples
typing, compilation, and semantics, which are treated indepen-
dently in CORECHKC. Separating semantics from compilation
isolates meaning from mechanism, easing understandability.
Indeed, it was this separation that led us to notice the limitation
with Checked C’s handling of bounds widening.

The most closely related work is the formalization of
Checked C done by Ruef et al. [23]. They present the type
system and semantics of a core model of Checked C, mech-
anized in Coq, and were the first to prove a blame theo-
rem. CORECHKC’s Coq-based development (Section III) sub-
stantially extends theirs to include conditionals, dynamically
bounded array pointers with dependent types, null-terminated
array pointers, dependently typed functions, and subtyping.
They postulate that pointer metadata can be erased in a real im-
plementation, but do not show it. Our CORECHKC compiler,
formalized and validated in PLT Redex via randomized testing,
demonstrates that such metadata can be erased; we found that
erasure was non-obvious once null-terminated pointers and
bounds widening were considered.

VII. CONCLUSION AND FUTURE WORK

This paper presented CORECHKC, a formalization of an
extended core of the Checked C language which aims to
provide spatial memory safety. CORECHKC models dynami-
cally sized and null-terminated arrays with dependently typed
bounds that can additionally be widened at runtime. We
prove, in Coq, the key safety property of Checked C for
our formalization, blame: if a mix of checked and unchecked
code gives rise to a spatial memory safety violation, then this
violation originated in an unchecked part of the code. We also
show how programs written in CORECHKC (whose semantics
leverage fat pointers) can be compiled to COREC (which does
not) while preserving their behavior. We developed a version
of CORECHKC written in PLT Redex, and used a custom
term generator in conjunction with Redex’s randomized testing

framework to give confidence that compilation is correct. We
also used this framework to cross-check CORECHKC against
the Checked C compiler, finding multiple inconsistencies in
the process.

As future work, we wish to extend CORECHKC to model
more of Checked C, with our Redex-based testing framework
guiding the process. The most interesting Checked C feature
not yet modeled is interop types (itypes), which are used
to simplify interactions with unchecked code via function
calls. A function whose parameters are itypes can be passed
checked or unchecked pointers depending on whether the
caller is in a checked region. This feature allows for a more
modular C-to-Checked C porting process, but complicates
reasoning about blame. A more ambitious next step would be
to extend an existing formally verified framework for C, such
as CompCert [13] or VeLLVM [28], with Checked C features,
towards producing a verified-correct Checked C compiler. We
believe that CORECHKC’s Coq and Redex models lay the
foundation for such a step, but substantial engineering work
remains.

Acknowledgments: We thank the anonymous reviewers
for their helpful, constructive comments. This work was sup-
ported in part by a gift from Microsoft.

REFERENCES

[1] Sandrine Blazy and Xavier Leroy. Mechanized Semantics for
the Clight Subset of the C Language. Journal of Automated
Reasoning, 43(3):263–288, 2009. ISSN 1573-0670. doi:
10.1007/s10817-009-9148-3. URL http://dx.doi.org/10.1007/
s10817-009-9148-3.

[2] Jeremy Condit, Matthew Harren, Zachary Anderson, David
Gay, and George C. Necula. Dependent Types for Low-Level
Programming. In Proceedings of European Symposium on
Programming (ESOP ’07), 2007.

[3] Junhan Duan, Yudi Yang, Jie Zhou, and John Criswell. Refac-
toring the FreeBSD Kernel with Checked C. In IEEE Cyberse-
curity Development Conference (SecDev), September 2020.

[4] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and
David Tarditi. Checked C: Making C Safe by Extension. In
2018 IEEE Cybersecurity Development (SecDev), pages 53–60,
2018. doi: 10.1109/SecDev.2018.00015.

[5] Chucky Ellison and Grigore Rosu. An Executable Formal
Semantics of C with Applications. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’12, pages 533–544, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1083-3. doi:
10.1145/2103656.2103719. URL http://doi.acm.org/10.1145/
2103656.2103719.

[6] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt.
Semantics Engineering with PLT Redex. The MIT Press, 1st
edition, 2009. ISBN 0262062755.

[7] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks,
Yanling Wang, and James Cheney. Region-based Memory
Management in Cyclone. In PLDI, 2002.

[8] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The
Essence of Javascript. In Proceedings of the 24th European
Conference on Object-Oriented Programming, ECOOP’10,
page 126–150, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN
3642141064.

[9] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. Defining
the Undefinedness of C. SIGPLAN Not., 50(6):336–345, June

62

2015. ISSN 0362-1340. doi: 10.1145/2813885.2737979. URL
https://doi.org/10.1145/2813885.2737979.

[10] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks,
James Cheney, , and Yanling Wang. Cyclone: A Safe Dialect of
C. In USENIX Annual Technical Conference, pages 275–288,
Monterey, CA, 2002. USENIX.

[11] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Gar-
buzov, Steve Zdancewic, and Viktor Vafeiadis. A Formal C
Memory Model Supporting Integer-pointer Casts. SIGPLAN
Not., 50(6):326–335, June 2015. ISSN 0362-1340. doi:
10.1145/2813885.2738005. URL http://doi.acm.org/10.1145/
2813885.2738005.

[12] Leonidas Lampropoulos and Benjamin C. Pierce. QuickChick:
Property-Based Testing in Coq. Software Foundations series,
volume 4. Electronic textbook, August 2018. Version 1.0. http:
//www.cis.upenn.edu/∼bcpierce/sf.

[13] Xavier Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, July 2009. ISSN
0001-0782. doi: 10/c9sb7q. URL http://doi.acm.org/10.1145/
1538788.1538814.

[14] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon
Stewart. The CompCert Memory Model, Version 2. Research
Report RR-7987, INRIA, June 2012. URL https://hal.inria.fr/
hal-00703441.

[15] Liyi Li, Yiyun Liu, Deena Postol, Leonidas Lampropoulos,
David Van Horn, and Michael Hicks. A Formal Model of
Checked C (extended version). https://arxiv.org/abs/2201.13394,
2022.

[16] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan
Nienhuis, David Chisnall, Robert N. M. Watson, and Peter
Sewell. Into the Depths of C: Elaborating the de Facto
Standards. SIGPLAN Not., 51(6):1–15, June 2016. ISSN 0362-
1340. doi: 10.1145/2980983.2908081. URL https://doi.org/10.
1145/2980983.2908081.

[17] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen
Kell, Alexander Richardson, Robert N. M. Watson, and Peter
Sewell. Exploring C Semantics and Pointer Provenance. Proc.
ACM Program. Lang., 3(POPL):67:1–67:32, January 2019.
ISSN 2475-1421. doi: 10.1145/3290380. URL http://doi.acm.
org/10.1145/3290380.

[18] Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko.
Catala: A Programming Language for the Law. arXiv preprint
arXiv:2103.03198, 2021.

[19] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and
Steve Zdancewic. SoftBound: Highly Compatible and Com-
plete Spatial Memory Safety for C. In Proceedings of the
30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, page 245–258, New
York, NY, USA, 2009. Association for Computing Machinery.
ISBN 9781605583921. doi: 10.1145/1542476.1542504. URL

https://doi.org/10.1145/1542476.1542504.
[20] George C. Necula, Jeremy Condit, Matthew Harren, Scott

McPeak, and Westley Weimer. CCured: Type-Safe Retrofitting
of Legacy Software. ACM Transactions on Programming
Languages and Systems (TOPLAS), 27(3), 2005.

[21] Michał H. Pałka, Koen Claessen, Alejandro Russo, and John
Hughes. Testing an Optimising Compiler by Generating Ran-
dom Lambda Terms. In Proceedings of the 6th International
Workshop on Automation of Software Test, AST ’11, pages 91–
97, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0592-
1. doi: 10.1145/1982595.1982615. URL http://doi.acm.org/10.
1145/1982595.1982615.

[22] Ricardo Peña. An Introduction to Liquid Haskell. Electronic
Proceedings in Theoretical Computer Science, 237:68–80, Jan
2017. ISSN 2075-2180. doi: 10.4204/eptcs.237.5. URL http:
//dx.doi.org/10.4204/EPTCS.237.5.

[23] Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David
Tarditi, and Michael Hicks. Achieving Safety Incrementally
with Checked C. In Flemming Nielson and David Sands,
editors, Principles of Security and Trust, pages 76–98, Cham,
2019. Springer International Publishing. ISBN 978-3-030-
17138-4.

[24] Konstantin Serebryany, Derek Bruening, Alexander Potapenko,
and Dmitry Vyukov. AddressSanitizer: A Fast Address Sanity
Checker. In Proceedings of the 2012 USENIX Conference on
Annual Technical Conference, 2012.

[25] David Tarditi. Extending C with Bounds Safety and Improved
Type Safety, 2021. URL https://github.com/secure-sw-dev/
checkedc/.

[26] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis,
and Simon Peyton-Jones. Refinement Types for Haskell. SIG-
PLAN Not., 49(9):269–282, August 2014. ISSN 0362-1340.
doi: 10.1145/2692915.2628161. URL https://doi.org/10.1145/
2692915.2628161.

[27] Bin Zeng, Gang Tan, and Úlfar Erlingsson. Strato: A Retar-
getable Framework for Low-level Inlined-reference Monitors.
In Proceedings of the 22Nd USENIX Conference on Security,
2013.

[28] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and
Steve Zdancewic. Formalizing the LLVM Intermediate Rep-
resentation for Verified Program Transformations. SIGPLAN
Not., 47(1):427–440, January 2012. ISSN 0362-1340. doi:
10.1145/2103621.2103709. URL http://doi.acm.org/10.1145/
2103621.2103709.

[29] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak,
Rob Ennals, Matthew Harren, George Necula, and Eric Brewer.
SafeDrive: Safe and recoverable extensions using language-
based techniques. In 7th Symposium on Operating System
Design and Implementation (OSDI’06), Seattle, Washington,
2006. USENIX Association.

63

